
Introduction:
Implementation of the MVI56-MCM module for modbus communications:

Initial configuration of the module should be done using the sample ladder file for the
mvi56mcm module. This can be obtained from our ftp site at the following address:
ftp://ftp.prosoft-technology.com/pub/Ladder/MVI56_MCM/

You will want to download this file into a new control logix application, or copy it into
an existing application.

I. Module Setup and Overview

First of all, you will want to configure the module Input and Output image size (This will
already be configured if using the sample ladder file, but since proper operation of the
module depends on this, it’s best to verify this configuration). The diagram below shows
the proper configuration for the input and output image size of the module. This field is
also where you will want to change the slot of the module to match your application.

Make sure that the Comm Format is set for Data-INT. This will set the size for 16-bit
integer values. If this is configured inaccurately, then you will not get the proper size of
the data transfer, or you may get an error for the module that reads: “failed to modify
properties, invalid input size”.

Now that the setup of the module has been verified, you will want to move on to the
configuration of the module for communications. For this you will want to go under the
controller tags location on the project tree. All of the configuration for the module will
be done under the tag MCM. In order for any of the new values entered into these fields
to be used by the module, you will need to either WarmBoot, ColdBoot, cycle power to
the module, or re-download the program to the processor. The diagram below shows all
of the various locations for the module configuration.

ftp://ftp.prosoft-technology.com/pub/Ladder/MVI56_MCM/

The tab MCM.ModDef will be used to setup the database of the module. The module
has a 5000 register database that can be used for read and write data for the module. This
area sets up what registers are to be used for read data, and what registers will be used for
write data. The tags label MCM.ReadData and MCM.WriteData will be stored in the
module based on the locations defined under this tag.

MCM.Port1 and MCM.Port2 are used to configure the serial ports configuration for
the modbus communications. This area is used to setup the port as a master or slave,
baud rate, protocol, and various other configurations.

The next two tags MCM.P1.Cmd and MCM.P2.Cmd will be used to setup the modbus
master commands for the module. This area will be ignored when the port is configured
as a slave device. Each port can be configured for up to 100 modbus master commands.
The number of commands that will be processed by a master device is based on the tag
MCM.Port?.CmdCount. Only the number of commands specified in this tag location
will be processed by the master.

The tags MCM.InStat and MCM.BP provide status information for the modbus
communications on each of the ports, and the backplane communications of the module
and the Control Logix processor .

Data read from either a master device writing to the port as a slave, or data read from a
slave device will be located in the tag labeled MCM.ReadData. This location is data
read from the MVI56-MCM module back into the control logix processor.
Data placed in the tag name MCM.WriteData is to be used for information that is in the
control logix processor and needs to be written out to the module’s internal database.
This will include information that needs to be written out to a slave device (when setup as
a master), or information that has been written to the module when the port is configured
as a slave.

II. Module Configuration

This section will cover the configuration of the module. Further information on this can
be found in the MVI56-MCM Setup Guide and the MVI56-MCM User Manual. Both of
these documents can be found at the following website:
ftp://ftp.prosoft-technology.com/Manuals/MVI56_MCM/

The first step in the configuration of the module is in the tag labeled MCM.ModDef.
This will setup the read and write data locations.

The tags MCM.ModDef.WriteStartReg and MCM.ModDef.WriteRegCnt will be
used to determine which of the module’s 5000 register will be used for data to be written
from the control logix processor out to the MVI56MCM module. The WriteStartReg
will be used to determine the starting register location for WriteData [0-599] and the
WriteRegCnt will be used to determine how many of the 5000 registers will be used for
information to be written out to the module. The sample ladder file will setup 600
registers for write data, labeled MCM.WriteData[0-599]. For additional registers, you
will need to change the size of the array from 600 to the value you need (Changing the
array size will zero out all tags in the MCM tag location). Since the module pages data in
blocks of 200 registers at a time, you will want to keep this as a number divisible by 200
and also change rung 10 in the ladder file WriteData. The second LEQ statement will
need the Source B value changed to reflect these new registers. The value in this
statement will need to be equal to the number of registers for write data/ 200. Example
2000 registers will need a value of 10 (10 = 2000/200).
The tags MCM.ModDef.ReadStartReg and MCM.ReadRegCnt will configure in the
same manner, the only difference is that this is for registers to be read from the module
into the control logix processor. You will want to setup this as unique registers, and
make sure that it will not overlap the WriteData registers. To add additional registers for
ReadData you will want to change the array size and modify rung 2 of the ReadData
ladder routine.
The tag MCM.ModDef.BPFail will determine the number of consecutive times that
backplane communications will fail before the module will stop responding on the
modbus ports. A value of zero will have the module respond on the modbus ports even if
the backplane communications has been lost.

ftp://ftp.prosoft-technology.com/Manuals/MVI56_MCM/

Finally the tag MCM.ModDef.ErrStatPtr determines where in the module database you
will place status information. A value of –1 disables this parameter for the sample
application. All of this information is also available in the MCM.InStat fields.

The following configuration sets up the module database for WriteData[0-599] to be
stored in the module memory at register 0-599, and ReadData[0-599] to be stored in the
module memory at registers 600-1199 like shown below:

With the above configuration, the following is the layout of the tags and addressing:

MVI56MCM
Internal Reg.
Address

Control
Logix
Processor
 (IntAddress)

MCM.WriteData[0]
MCM.WriteData[1]

MCM.WriteData[598]
MCM.WriteData[599]

MCM.ReadData[0]
MCM.ReadData[1]

MCM.ReadData[598]
MCM.ReadData[599]

0
1

598
599

600
601

1198
1199

(Reg 1200-4999
Not used in the
sample program)

Data to write to
slaves when
module is a
master or data to
be read by a
master when the
module is a slave
Data read from
slaves when
module is master
or data to be
written by the
master when
module is a slave

III. Port Setup

The following section will setup the configuration of the port for communications with
the various modbus devices. These values will need to be configured for Port1 and Port2.

The tag MCM.Port1.Enabled will either enable or disable the port (note: even a port
that is disabled will require valid data values for baud rate, data bits, and stop bits).
Valid values for this location are 0 for disabled, 1 for enabled.
MCM.Port1.Type will determine if the port is to be used as a modbus master port or a
modbus slave port. Valid values for this field are as follows:

0- Modbus master
1- Modbus slave port
2- Modbus slave port with pass thru. This will allow for a write message to this

slave to be passed through the MVI56-MCM module database, and go directly
into the ladder logic. This module will set the MCM.BP.LastRead value to 9996
and the modbus write command will be handled by rung 8 in the ReadData ladder
file in the expanded ladder logic. This will allow for an unparsed modbus
message to be moved into the tag location MBMsg[0-499]. Here you will need to

parse out the data value and move it into the appropriate registers using the ladder
logic.

3- Modbus slave port with formatted pass thru and data values swapped. This mode
will allow for the same register to be read and written by a modbus master device,
and will also swap the bytes within the data value (some devices may require the
byte swapping, but with most device you will want to use a value of 4).

4- Modbus slave port with formatted pass thru (no swapping). This mode will also
allow for the same register location to be read and written by the master device.
Rungs 9, 10, and 11 in the ReadData ladder file will handle this information.
Special consideration must be taken into effect when implementing this mode.
Please see the MVI56_MCM_User_Manual for more details on this mode of
operation.

Note: Port type 2 through 4 require the expanded ladder logic samples.

The tags MCM.Port1.FloatFlag, MCM.Port1.FloatStart, and
MCM.Port1.FloatOffset can be used to setup floating point data. Please see the Set Up
Guide for more information on these features.

MCM.Port1.Protocol will define whether the module will operate using Modbus RTU
(value of 0), or Modbus ASCII (value of 1). When this is an option, you will want to use
Modbus RTU mode since data transfer in this mode is more reliable and efficient.

MCM.Port1.Baudrate is to be used to setup the baud rate of traffic on the serial port.
Valid values for this field are 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 28800,
384 or 3840 (for 38,400), 576 or 5760 (for 57,600), and 115, 1152, or 11520 (for
115,200).

The tag MCM.Port1.Parity will define the type of parity to be used by that port.
Valid values for this field are 0= None, 1= Odd, 2= Even, 3= Mark, and 4= Space.

The tags DataBits, and StopBits setup how many data bits and how many stop bits will
be used in the Modbus message. Valid values for DataBits are 7 or 8, and valid values
for StopBits are 1 or 2.
 Note: Modbus RTU mode will always need to use 8 data bits

The tags MCM.Port1.RTSOn and MCM.Port1.RTSOff will configure RTS on and off
delays for the port. These values are helpful when the port is using RS-422 or RS-485
wiring. Values in this field are represented in milliseconds. A value of 10 will configure
the delay for 10 milliseconds. Generally a value of 0 for the RTSOff is recommended as
too large of a value in this field can cause you to miss the beginning part of the return
response.

The MinResp tag is used to set the minimum number of milliseconds the port,
configured as a slave, will wait before sending a response back to the master.

UseCTS will enable the use of the cts line. A value of 0 will not enable the CTS line,
while a value of 1 will enable the use of the CTS line.

The tag MCM.Port1.SlaveID will be used to set the slave ID number of the module
when the port is configured as a slave.

The next set of values, BitInOffset, WordInOffset, OutOffset, and HoldOffset will
configure the internal database offset values for that port. This will only be used when
the port is configured as a slave, and when you need to setup specific modbus addressing.
Please refer to the MVI56_MCM_Set_Up_Guide for more details on the use of these
features.

The value CmdCount will configure the number of modbus master commands that the
module will issue to the various slave devices on that port. The value in this field will
determine the number of MCM.P1 or P2.Cmd that the port will scan.
Example: A value of 10 in this field will allow the master to look at P1.Cmd[0] –
P1.Cmd[9].

The MinCmdDelay will setup the minimum number of milliseconds the master will wait
before sending a query out to the slave device. This is a delay time between commands

The CmdErrPtr will determine where in the module database the command errors will
be stored. This will need to be place in a location that is in the ReadData tag location for
this information to be seen. A value of 1100 will place this information in the location
ReadData[500] and will extend for the number of commands that are configured in the
CmdCount field. Each Modbus master command will have an error code associated
with it. A value of 0 indicates that the command is operating properly, for a complete list
of error codes refer to the MVI56_MCM_User_Manual.

MCM.Port1.RespTO will configure the minimum number of milliseconds the port
configured as a master will wait for a response from the slave device. A value of 0 will
default to 1000 milliseconds or 1 second.

RetryCount will set the number of times the master will retry a command to a slave
device before moving on to the next command. A value of 2 will setup 2 retries. This
means that a message will be sent out to the slave device, if there is no response, then the
master will retry that command 2 more times before moving onto the next command in
the scan list.

MCM.Port1.ErrorDelayCntr can be used to setup the number commands that will be
skipped in the P1.Cmd field when a command has gone into error. For most applications
a value of 0 is best for this field, since when configured inaccurately this can cause
communications with the slave devices to cease.

IV. Master Command Configuration

The following section will detail the configuration of the Modbus master commands.
This section determines the communications with the master port and the slave devices
that are connected to that port.

The tag MCM.P1.Cmd[0].Enable will need to be configured for the command to be
executed. A value of 0 in this field will disable the command and it will not be sent out
the port. A value of 1 will enable the command to be transmitted by the master every
time it comes to that command in the scan list. If a value of 2 is entered in this field, the
command will only be issued when the data to be written out to the slave device has
changed. This can only be used on write commands to be sent out to the slaves.

IntAddress will determine where in the module’s 5000 register database the data will be
stored to or written from. On a read command this will determine once the information
has been read from a slave, where it will be placed in the module database. On read
commands you will want to configure this for a location that is setup for ReadData. The
internal database location of the ReadData and WriteData tags is determined by the
configuration setup in the MCM.ModDef tag location.
For write data the IntAddress will determine where to obtain the information to be
written out to the slave device. This will need to be a location that is setup as
WriteData.

NOTE: When using a bit level command you will want to define this field at the bit
level. For instance, when using a function code 1,2 for a read command you will need to
have a value of 9600 to place the data in MCM.ReadData[0] (register 600 * 16 bits per
register = 9600). In the above configuration for MCM.P1Cmd[1] a value of 9760 will
place the data in address 610 of the module memory and this will then be stored in
MCM.ReadData[10].

The tag PollInt can be used to setup an interval for the data to be polled at. Values in
this field will represent the number of seconds that a master device will wait before
issuing this command. This is helpful for non-critical information. For example a value
of 60 will setup this command to be issued every 60 seconds or 1 minute.

MCM.P1.Cmd[0].Count will setup how many words (when using a word range read or
write command) or bits will be read from the slave device.

Swap will be used to setup the swapping of the data values received from the slave
device. This is useful when reading floating point data. Valid values for this field are as
follows:

0- Module performs no data swapping (mode that will be used for most
applications).

1- Swap word values from each word pair received.
2- Swap word and byte values for each word pair received.
3- Swap bit values.

Device will determine the modbus slave address that the command will be issued to.
Valid values for a Modbus slave are 1-255. A Device of 0 will be used to issue write
commands to all slaves on this port(cannot be used for read commands).

MCM.P1.Cmd[0].Func will determine the modbus function code that will be issued in
the command to the slave device. Valid values for this field are as follows:

1- Read Coil Status. This will read modbus addresses 0001-9999. These are bit
values used to indicate coil status, and can also be written to using a function code
of 5 or 15.

2- Read Input Coils. This will read modbus addresses 10001-29999. These are also
bit values, but are read only data values.

3- Read Holding Registers. This is to be used for Modbus addresses 40001-47999.
This is a 16 bit word value, and can be written to using the function codes of 6
and 16.

4- Read Input Registers. Will read modbus addresses 30001-39999. These are also
16 bit word values, but are read only data, and cannot be written to by the master.

5- Write Single Coil Status. This will write to modbus addresses 0001-9999. This
command will write to only one coil. If you want to write to multiple coils you
will need to use a function code of 15.

6- Write Single Register. For modbus addresses 40001-47999. This will write one
single register value out to a slave device. For multiple register writes you will
need to use a function code of 16.

15- Multiple Coil Write. This function code will write multiple coil values to the

slave addresses 0001-9999.
16- Multiple Register Write. Will write multiple register values to the slave device

at addresses 40001-47999.

DevAddress will be used to indicate the modbus slave address for the register or registers
associated with that command. This is the offset address for the modbus slave device.
With modbus, to read an address of 40001, what will actually be transmitted out port is a
function code of 03 (one byte) with an address of 00 00 (two bytes). This means that to
read an address of 40501, you would want to put a Func of 3 with a DevAddress of 500.
This applies to modbus addresses 10001-47999. This is why you will always need to
make sure of the function code that is to be used to read or write information from the
slave.
Below is a definition that will help with your DevAddress setup:

FC 1,5, or 15 DevAddress = Modbus address in device – 0001
 Example: Modbus address 0001 = DevAddress 0
 Modbus address 1378 = DevAddress 1377
FC 2 DevAddress = Modbus address in device – 10001
 Example: Modbus address 10001 = DevAddress 0
 Modbus address 10345 = DevAddress 344
FC 3,6, or 16 DevAddress = Modbus address in device – 40001
 Example: Modbus address 40001 = DevAddress 0
 Modbus address 40591 = DevAddress 590
FC 4 DevAddress = Modbus address in device – 30001
 Example: Modbus address 30001 = DevAddress 0
 Modbus address 34290 = DevAddress 4289

Note: Some devices show their addressing already as an offset address (the address that
actually goes out on the modbus communication line). If your device manufacturer tells
you to use a function code 3 with an address of 100, then that is what you want to use in
the DevAddress field. If they give you the modbus address like shown above, use the
offset formula.

V. Jumper and wiring settings

The MVI56MCM module will support RS232, 422, and 485 wiring. This selection is set
by a jumper on the module shown in the following picture:

The setup jumper should always be in the UNJUMPERED position, unless instructed by
the factory to install this jumper. Each of the PRT jumpers is clearly labeled. PRT2 is
the label for P1, and PRT3 is the jumper setting for P2 (the bottom port).

The following is the wiring diagram for each type of cable:

RS-232

When the RS-232 interface is selected, the use of the modem control lines is user definable. If
no modem control lines will be used, the cable to connect to the port is as shown below:

2

3

5

RxD

TxD

COM

MVI56-MCM Modbus Port RS-232 Cable (No Handshaking)
DB-9 Male

RxD

TxD

COM

RS-232 Host

The RTS line is controlled by the RTS on and off parameters set for the port. If the CTS line is
used (usually only required for half-duplex modems), the RTS and CTS lines must either be
connected together or connected to the modem. The diagram below displays the cable
required when connecting the port to a modem.

2

3

5

RxD

TxD

COM

MVI56-MCM Modbus Port RS-232 Cable (Use CTS Line and Modem)
DB-9 Male

TxD

RxD

COM

Modem

7RTS RTS

8CTS CTS

RS-485

When the RS-485 interface is used, a single two or three wire cable is required. The use of
the ground is optional and dependent on the RS-485 network. The cable required for this
interface is shown below:

1

8

5

TxD/RxD+

TxD/RxD-

GND

MVI56-MCM Modbus Port RS-485
DB-9 Male

TxD/RxD-

TxD/RxD+

GND

RS-485 Device

RS-422

When the RS-422 interface is used, a four or five wire cable is required. The use of the ground
is optional and dependent on the RS-422 network. The cable required for this interface is
shown below:

1

8

5

TxD+

TxD-

COM

MVI56-MCM Modbus Port RS-422 Cable
DB-9 Male

RxD-

RxD+

COM

RS-422 Device

2RxD+ TxD+

6RxD- TxD-

The above wiring diagrams show the pins used for each of the different wiring types.
The module ships with a DB9 to RJ45 connector to ease in the wiring to the module. If
you wish to make your own RJ45 connection to go directly into the module then you will
use the same pins as specified above. The wiring of the RJ45 to DB9 adapter cable is just
a straight through cable (pin 1 on RJ45 to pin 1 on DB9, 2-2, 3-3, etc…)

When using RS485 wiring, if you do not have communications at first, try switching the
+ and – lines. Different device manufacturers have different interpretations of + and -.

The module ships with 2 DB9 to screw terminal adapters (1454-9F). These are designed
to make an easy connection to the module when using RS422 or RS485 (not to be used
for RS232 mode).

This manual was designed to ease implementation of ProSoft Technology’s MVI56-
MCM module. Not all of the features and specifications of the module were described in
this manual. For complete functionality of the module you will need to reference the
following documents:

MVI56_MCM_User_Manual

These documents can be found at on our ftp site at the following location:
ftp://ftp.prosoft-technology.com/pub/Manuals/MVI56_MCM

ftp://ftp.prosoft-technology.com/pub/Manuals/MVI56_MCM

	I. Module Setup and Overview
	Module Configuration
	Port Setup
	Master Command Configuration
	Jumper and wiring settings

