ETHERNET/IP PROTOCOL NETWORK MESSAGE HOUSKEEPING
By Erik Syme, ProSoft Technology

The following information is designed to assist in the configuration of an EtherNet/IP network over
a radio network.

EtherNet/IP has two standard types of messages. The first type of messaging, PCCC (PC
cubed), is a DF1 message that has been adapted to the EtherNet/IP specifications. These
messages are unconnected, and because they do not have to go through the connection
manager this type of messaging can reduce the traffic on an EtherNet/IP network.

CIP is another type of messaging reference below. This type of messaging is connected
messaging, and must go through the connection manager. Because of this connection manager,
each time a MSG instruction is enabled in a processor, a FWD Open and FWD Close request
must be sent on the EtherNet/IP line.

Remember that since EtherNet/IP uses TCP/IP for it's transport layer, all EtherNet/IP messages
are connected messages. Each type of messaging, PCCC and CIP, must be connected on the
TCP/IP layer. CIP messages go through an additional connection at the Application Layer, after
they have already established the connection at the Session Layer. The following shows the 7
layers of TCP/IP communications:

Applicaton

|
Application | Fresantation
Sassion

Transporl

Metwork
Data Transpart

Data link

Physical

EIA oo el K i S L ||

All of the messaging that we are talking about is on the Application layer. We will briefly discuss
the connection of EtherNet/IP, however this is not the area of focus here. We are only talking in
the reduction of the traffic at the Application layer (shown above).

The following will illustrate from the opening TCP/IP sequence on through the completion of one
MSG instruction from a Control Logix processor with a 1756-ENBT to a Compact Logic L35E
processor. The below MSG example is a PCCC style message.

167 6. 248608 152.168.0.1%1 152.168.0.118
168 6. 2469725 192.168.0.118 152.168.0.181
169 6. 250334 192.168.0.191 192.168.0.118
170 6.251638 192.168.0.1%1 192.168.0.118
172 6. 255892 192.168.0.118 152.168.0.1591
173 6. 255897 192.168.0.118 192.168.0.1591
174 B6.256587 192.168.0.1%91 192.168.0.118
175 ©.257426 152.168.0.1%1 152.168.0.118
176 & 152.168.0.118 152.168.0.1581
ALl E 65.0.19] 152.1658.0.118
178 a. 192.168.0.118 192.168.0.191

TCP
TCP
TCP
ENMIP
TCP
ENIP
TCR
ENIP
ENIP

ENMIP

1026 > 44818 [5¥N]
44818 » 1026 [5vM,
1026 > 44818 [ACK]
List Serwices
44818 » 1026 [ACK]
List serwices
1026 > 44818 [ACK]
register Session
register Session
send RR Data

send RR Data

Seq=3107975613 Ack=0 wWin=409%& Len=
ACK] Seq=2379589053 Ack=31070975614
Seq=3107975614 Ack=2379589054 wWin=
CrReg)
Seq=2379580054 Ack=3107975638 win=
CRsp)
5eq=3107575638 Ack=2379589104 win=
(reqg), Session: Ox00000000
(Rsp), Session: Ox0Aa020300
frReq), Unconnected send, , Unkno

(Rsp), Unknown Service (4b)

By looking in the far right column you can see that for the completion of one MSG instruction and

how it appears on the Ethernet Line or Radio Network.
On PCCC the sequence for the messaging is as follows:

SYN - client to server
SYN ACK - server to client
ACK - client to server

At this point the TCP/IP socket is open.

List Services - client to server
List Services Response - server to client

Register Session - client to server

Register Session Response - server to client

At this point the session has been registered and data can be exchanged between the two

devices.

Send RR Data - client to server

Send RR Data Response - server to client

Data has now been exchanged between the two devices.

Now we will look at a sample of a CIP message. Below is the traffic on the wire for a CIP style
EtherNet/IP message:

402 23,359627 192.156.0.191 192.1458.0,113 TCR 1030 = 4316 [3vN] SensdlB3431615 ack=0 win=d0%= Len=0 As3=1460 wish Tow=§19750 TSE

410 23.390626 192.166.9,113 192.165.0,1%1 TP Q4FLE > 1030 [5YH, ACK] SEq=34 MEIT053 Ack=4LE34 31614 Win=4095 Len=0 HSS=1450 Wi=0Q
411 73.341968 192.1RE.0.191 109Z.168.0.118 TP 1030 3 44918 [ACK] Sagq=41E3431614 Ack=I4540170%d Win=iaes Larmd

413 29.382833 192.18E.0.191 192.1A2.0.1189 CuIp L1zt Sarvdces fran)

413 24344471 191.168.40.118 192.148.40.1 TR A4E1E > 1030 [ACK] Seqa34548170054 Ack=4183431638 Win=4096 Len=0

414 28,365532 192.16E.9.1138 192.1498.4.1 EMIP List services CREp]

415 28, 3661681 192.16E6.90.191 192.168.0,1148 TCR 1030 = 4816 [ack] Se=41B343163E ACk=345400710d Win=4i070 Lene=0

416 23, 357063 192.145B6.9.191 192.1468.0,113 EMIP register session Creq), =zession: OxCdooo0on

417 23,399679 192.156.9,113 192,158.9,1%1 EMIF register session CR5R), sesslon: Qxlw@zovon

41E 23.349619 192.196.9.191 192.158.9,118 EWIP Send RR Data LRaq), Forvard Jpen

41l 23.377610

431 29,2850

192.18E.0.113 192.1488.0.161 EMIP Sand RA Data CRsp).
1 1 19%. MIF - nit Cata Li-{up]

Forward open
1GE._ 0,191 c. 1AB_0.118 E L] MID: L
16E.4.1148 192.168.0.1861 EMIP S=nd Unit Data CREpl,

“OMIG: OO0l UnknoweTi SEry AT
CONID: Dxd0254102, Unknoen Service f4c]

103

423 28,397055 192.16E.0,191 192.148.40,1148 EMIP =end RA DATa Creql, Forvard Close
423 23.404433 192.146.9.113 192.168.0.181 EMIF =end RA OaTa crspd, Forward Close[unreassenbled Facker]

Once again, you will see the familiar opening sequence, this time using CIP messaging. By
looking at the far right hand column you can see the following:

SYN - client to server
SYN ACK - server to client
ACK - client to server

At this point the TCP/IP socket is open.

List Services - client to server
List Services Response - server to client

Register Session - client to server
Register Session Response - server to client

At this point the session has been registered and data can be exchanged between the two
devices.

Every data request with CIP style messaging will now require 6 messages instead of the 2
messages (Send RR Data) as was seen with PCCC style messages.

Now instead of just 2 Send RR messages to exchange data via PCCC messages, a Send RR
Data is used for a FWD Open (Forward Open), then a Send Unit Data is used to exchange data.
After this a Send RR Data is necessary for a FWD Close (Forward Close) message.

Below is the sequence:

Send RR Data (FWD Open Request) - Client to Server
Send RR Data (FWD Open Response) - Server to Client
Send Unit Data (Request) - Client to Server
Send Unit Data (Response) - Server to Client
Send RR Data (FWD Close Request) - Client to Server

Send RR Data (FWD Close Response) - Server to Client
On CIP messaging, data has now been exchanged.

If we look at the FWD Open Request and Response, FWD Close Request and Response we can
see the amount of data that is added on the EtherNet/IP network using the CIP messaging.
Below is the FWD Open message:

41E 28 3506E1E 102, 1680118 S [Ragy, Forward opan

418 23, 377610 192.16B.0.118 19z, 16&.0.181 ENIF zend RR Data (R=pl, Forward open

420 25385401 1GR.16E.0.1%1 102, 168.0.118 EHIP Zend Unit Data [Rag), CohMIDb: Ox00L50341, Unknown Sarwica (4o
421 24.356322 1%2.166.0.114 192, 168,0.181 EHIF send unit Data (R=pd, CofIp: Ox00254102, unknown Tervice (4ol
427 28_30F6ESS AGR_1GE.D.1Gd 102 168 0,118 CHIP Send AR Data [Rag), Forward Clo=za

423 28.406436F 192.166.0.114 19z, 1658.0.181 ENIF send RR pata (R=ply, Forward Closelunreassembled Packet]

B Frama 41E £14. s\ q-F o wira, 142 1T &S apturad)
BEethener II, =Src: doiobiboipi:fa:d7, osty 00:00:bcizliad:BE
B rnternet Protocol, Sro addr; 199, 168,0,15%10 (1%2,1468.0.1%10, pst Addr; 192.168.0,118 (1% .166. 0,118)
B rrareml ssion cantral pProtocol, sre POeT! 1030 (10307, ©sT POrT: 443813 (44ELE), Zeq: 4153431666, ock: 3454817132, Len: &5
B Etherwet /IP [Industrial Protocoll
@ encapsularon Header
A Command Specific Data
ircerface Handle: DeODO0OO00
Timeout: 0
B ITem Count: 2
EType Ik Null Address Item (000000
EType Ip: unconnected cata ITes (0x0akz)

In looking at the size of Frame 418, you will see that it is “142 bytes on wire”.

Below is the sizes of each of the Frames shown above:

Frame 418 (FWD Open Request) - 142 Bytes
Frame 419 (FWD Open Response) - 124 Bytes
Frame 422 (FWD Close Request) - 118 Bytes
Frame 423 (FWD Close Response) - 108 Bytes

492 Bytes

By using PCCC style messaging instead of CIP style messaging, there can be a reduction of 492
bytes per MSG instruction in a Control Logix or Compact Logix processor.

By reducing the amount of Bytes needed for data exchange you can improve overall throughput
on your network, and a reduction of total traffic.

