

ECHO OLE DB Data
Provider

Version 2.0

How to Contact Us

OSIsoft, Inc.
777 Davis St., Suite 250
San Leandro, CA 94577 USA
or PO Box 727
San Leandro, CA 94577 USA
(1) 510-297-5800 (main phone)
(1) 510-357-8136 (fax)
(1) 510-297-5828 (support phone)
support@osisoft.com

OSIsoft Canada ULC
1155 University St., Ste. 612
Montreal (QC) H3B 3A7 Canada
(1) 514-493-0663
(1) 514-493-0980 (fax)

OSIsoft, Ltd.
Unit A1, 255 Rawson St.
Auburn, Sydney 2144, Australia
(61) 2-9648 1511
(61) 2 9648 1522 (fax)

European Joint Venture
OSI Software GmbH
Hauptstrasse 30
D 63674 Altenstadt, Germany
(49) 6047-989 0
(49) 6047-989 188 (fax)

OSI Software, Ltd
Level 4, 126 Khyber Pass Rd.
Grafton Auckland New Zealand 1003
or PO Box 8256
Auckland New Zealand 1003
(64) 9-522-5900
(64) 9-522-5201 (fax)

Wired City
Level 3 Septimus Roe Square
256 Adelaide Terrace
Perth WA 6000 Australia
(61) 8 9218 9780

OSI Software Asia, Pte Ltd.
152 Beach Road
#09-06 Gateway East
Singapore 189721
(65) 391-1811
(65) 295-2488 (fax)

OSIsoft, Inc.
1266 Nan Jing West Road 200040
Shanghai China

For additional information, please see our Web site:
http://www.osisoft.com

ECHO Developers Guide.doc

OSIsoft, Inc. is the owner of the following trademarks and registered trademarks: PI System, PI-ProcessBook, Sequencia,
Sigmafine, gRecipe, and sRecipe. All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Any trademark which appears in this book that is not owned by OSIsoft, Inc. is the property of its
owner and use herein in no way indicates an endorsement, recommendation or warranty of such party's products or any affiliation
with such party of any kind.

RESTRICTED RIGHTS LEGEND
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause at DFARS 252.227-7013

mailto:support@osisoft.com

iii

Contents
Chapter 1 Introduction
Product Overview .. 1-2
Introduction to OLE DB .. 1-3

OLE DB Architecture ... 1-3
OLE DB Data Provider for ECHO ... 1-5

Chapter 2 Installation
Installation / Uninstallation Guidelines.. 2-2

Chapter 3 Configuration for Data Access
Configuration Attributes .. 3-2
ECHO OLE DB Specific Attributes... 3-3
ECHO OLE DB Login Dialog Box ... 3-5
Universal Data Link (UDL) ... 3-6

Creating a UDL File ... 3-6
Editing with the Data Link Properties Dialog Box ... 3-7
Connection String Format... 3-10
Setting Maximum Processing Time for Queries ... 3-10

Chapter 4 Supported ANSI SQL 92 (Subset)
SELECT Statements .. 4-2
INSERT, UPDATE, DELETE, CREATE/DROP DATABASE Statements 4-4
CAST Operator .. 4-5

Chapter 5 Catalogs and Tables
Catalog Usage .. 5-2
CREATE DATABASE / DROP DATABASE Statements...................................... 5-3
Table Structure- ECHO Catalog .. 5-4
Table Structure - Historians Catalog.. 5-7
Supported Data Types.. 5-14
Supported Time Stamp Formats... 5-15
Examples of Other Statement Use ... 5-16

Simple Expressions... 5-16
Simple Table Queries.. 5-16
NULL Values.. 5-17
DISTINCT .. 5-17
TOP n.. 5-17
GROUP BY, HAVING... 5-17
ORDER BY .. 5-17
Inner Joins... 5-17
Nested Queries.. 5-18
Subqueries... 5-18
UNION ... 5-18
INSERT INTO SELECT .. 5-18

iv Contents

Chapter 6 ActiveX Data Objects - ADO
Description of the ActiveX Data Object...6-2
ADO Object Model ..6-4
ADO Databinding ActiveX Controls ...6-5
ADO and DBTIMESTAMP ...6-6
Samples Provided ...6-7

ADO Intro Sample ..6-7
ADO.NET Intro Sample..6-9
ASP Sample ..6-10
MyECHOSQL Sample ..6-11
UDL Sample..6-11

Chapter 7 OLE DB Server Environments
Microsoft SQL Server Linked Server...7-2

Configuration Through the Enterprise Manager ...7-3
User Account and DCOM Settings for OutProc Instantiation...........................7-8
Four-Part Names ...7-10
Sample SQL Statements..7-11
Pass-Through Queries ...7-13
Known Linked Server Issues...7-14

Oracle Generic Connectivity ..7-16
Configuration of Generic Connectivity ...7-17

Chapter 8 Advanced Topics
OLE DB – ODBC Transformation...8-2

MS SQL Server 2000 as ODBC Gateway...8-3
Oracle 8i/9i Generic Connectivity...8-4
Attunity Connect ...8-5
Microsoft Access 2000 / 2002 as ODBC Client..8-6

Microsoft Excel 2000 / 2002 ..8-7
RowsetViewer ..8-9

Connection ..8-10
SQL Statement Execution ...8-11

MS SQL Reporting Services ..8-12

Chapter 9 Troubleshooting
Error Messages ...9-2
Log File ..9-3

Appendix A Tested OLE DB Clients
Clients Tested ..A-2

Glossary

Index

 1-1

Chapter 1
Introduction

This chapter outlines the features of the OLE DB Data Provider for the Embedded
Component Historian Object (ECHO).

1-2 Chapter 1

Product Overview
The Embedded Component Historian Object (ECHO) by OSIsoft is a tool that
Manufacturers use to add a scalable, robust, high-performance time-series data
historian to their hardware devices or software products.

ECHO is an open system, and as such, it is necessary to provide industry standard
interfaces that allow other vendor products to connect to it. The two most
important are OPC and OLE DB.

The ECHO SDK allows developers to write code that connects to ECHO using any
development environment that supports COM (Component Object Model).

ECHO OLE DB, on the other hand, provides standard public interfaces that allow
users to connect any client that works with OLE DB data sources. Programming is
therefore reduced to configuration tasks. The number of these clients is continually
growing because OLE DB standards are widely accepted.

ECHO itself is not a relational database, and ECHO OLE DB only provides a
relational view on ECHO data by implementing SQL. Both configuration and the
actual archive data is represented in the form of catalogs and tables.

 Introduction 1-3

Introduction to OLE DB
OLE DB is an open specification designed to build on the success of ODBC by
providing an open standard for universal data access. Whereas ODBC was created
to access relational databases, OLE DB is designed for both relational and non-
relational information sources, including mainframe ISAM/VSAM and
hierarchical databases, email and file system stores, text, graphical and
geographical data, custom business objects, and more.

OLE DB defines a collection of COM interfaces that encapsulate various database
management system services. These interfaces allow developers to create software
components that implement such services. OLE DB components consist of the
following.

 Data Providers, which expose data.

 Data Consumers, which use data.

 Service Providers, which extend the functionality of data providers by
implementing extended interfaces not natively supported by the data stores;
such as query processors, cursor engines, and synchronization service.

OLE DB Architecture
The following figure illustrates the Universal Data Access (UDA) architecture.
This is a developing platform Microsoft defines for multi-tier enterprise
applications that require access to diverse relational or non-relational data sources
across intranets or the Internet.

1-4 Chapter 1

To give users universal access to external data stores, applications must be able to
access the data store, read the data, and copy or modify it. To do this, applications
must either recognize the format of the stored data, or else they must operate
through a secondary program that can handle the data format.

For example, a financial report designer application might use a secondary ODBC
driver to access data in a relational database. Such a secondary program does the
following tasks.

 Accepts requests for data from the application.

 Accesses the data from the data store.

 Returns the data to the application.

Data access through secondary program requires a common language of
communication, or interface, between the data requester (the application) and the
secondary program. The more powerful the interface, the better the
communication that is achieved.

The Microsoft OLE DB specification is a powerful interface that is supported by
many commercially available applications. In addition to using these commercial
applications for OLE DB, developers can also write customized applications that
use the OLE DB interface for data access. When OLE DB is the interface used for
data access, the application is called the OLE DB data consumer, and the
secondary program is called the OLE DB data provider. The following figure
shows how the OLE DB data provider and the data consumer use a common
interface to communicate.

It is the function of the OLE DB data provider to convert OLE DB data requests
received from the data consumer to the native format of the data store. Each data
store used can have a unique native format.

 Introduction 1-5

Although data can be stored in a variety of formats, these formats fall into two
broad categories.

 Relational data – This data is stored in a database that is governed by a
Relational Database Management System (RDBMS). The RDBMS presents
the data as tables that consist of rows and columns. Typically, the RDBMS
supports SQL to retrieve and update the data. The RDBMS also manages user
access to the data. Microsoft SQL Server and Oracle are examples of
RDBMS(s) that store relational data.

 Non-Relational data – This data is stored in a file system instead of tables of
rows and columns. These systems usually do not provide a way to sort and
retrieve the data in their files beyond simple text searching. Email and word
processor files are examples of non-relational data stores. Some databases,
such as Lotus Notes do not meet the strict definition of relational databases.

Structured Query Language (SQL) is often used by applications to read, retrieve,
and update complex data in a relational data store.

 NOTE: OLE DB data providers that support SQL processing are
sometimes referred to as OLE DB (SQL).

OLE DB Data Provider for ECHO
ECHO itself is not a relational database and ECHO OLE DB exposes only the
configuration and archive data in a relational way. See the following figure.

The ECHO OLE DB provider meets the OLE DB 2.0 specification, and in its basic
form it is not dependent on any other component coming with Microsoft Universal
Data Access Components (MDAC) suite.

However, it does require the ECHO SDK to be installed to connect to the ECHO
archive engine. For a detailed description of the ECHO specific components and
versions the ECHO OLE DB requirements, see the "Installation" chapter.

 2-1

Chapter 2
Installation

This chapter describes how to install the ECHO OLE DB Data Provider.

2-2 Chapter 2

Installation / Uninstallation Guidelines
Before You Start

It is recommended that you complete the following actions before you run the
setup program.

 Before installing the OLE DB Provider, log on to your Windows system using
an account with administrator privileges.

 Close any programs, particularly OSIsoft client or OSIsoft applications that
are currently running.

 Uninstall any previous versions of the OLE DB Data Provider, including beta
and pre-release versions.

 Verify that your operating system is one of the following: Windows XP
Professional, Windows Server 2003, or Windows 2000 Professional (Service
Pack 2 or later) operating systems.

 Verify that you have the following software package installed.

The ECHO SDK provides COM and DCOM access to ECHO archive engines.
Therefore, the ECHO SDK Release 1.3.0 or greater must be resident on the client
node.

System Requirements

The ECHO OLE DB Data Provider is designed to run on the Windows NT family
of operating systems. Before installing, verify that your system meets the
following requirements.

 Pentium ® (or Pentium-compatible) processor-based system (Pentium III 800
MHz processor or faster is recommended).

 At least 128 MB of RAM (256 MB recommended).

 Hard disk space: 70 MB of hard disk space needs to be available. For
installation, 160 MB must be available.

 Monitor capability: Minimum of 256 colors and 800 X 600 pixel resolution.

 Windows XP Professional, Windows XP Server, or Windows 2000
Professional (Service Pack 2 or later) operating systems.

Installing the ECHO OLE DB Data Provider

Install the ECHO OLE DB Data Provider in either of two ways.

 The set-up kit – This set-up kit includes MDAC and the ECHO OLE DB.
Each component is only installed or updated when necessary. The set-up kit
uses the Microsoft Installer (MSI) technology and updates this as well.

 The plain Microsoft Installer (MSI) kit (by way of a download from Technical
Support). This kit automatically copies and registers the ECHO OLE DB
related DLL. This kit creates the necessary directories on your hard disk, and
copies the files into the appropriate directories.

OverviewUninstalling the ECHO OLE DB Data Provider

To remove the OLE DB Data Provider from your system, use the standard
Windows Add/Remove Programs utility in the Control Panel..

 Installation 2-3

Installed Components

The list of installed files is provided in the release notes document ReadMe.doc.

In addition to the ECHO OLE DB Data Provider itself, these tools and examples
are also installed.

 ADO Intro – This sample introduces the basic principles of ADO. For the
resulting data set presentation, the Microsoft DataGrid Control is used.

 ADO.NET Intro – This simple example describes how to use ECHO OLE DB
provider in “managed environment”.

 ASP (Active Server Pages) – Example that prints out results of a SELECT
query in a web browser.

 MyECHOSQL - Simple C++ console application that executes a batch of SQL
queries through ECHO OLE DB.

 UDL - Example of the UDL file

 3-1

Chapter 3
Configuration for Data
Access

This chapter describes how to configure the connection information.

3-2 Chapter 3

Configuration Attributes
Before accessing data via an OLE DB data provider, you must provide the
connection (initialization) information. This information can be saved in special
text files, named Universal Data Link (UDL) or specified directly in the client
application (data consumer).

The following table lists the configuration attributes.

Configuration Attributes
OLE DB Property Description Corresponding UDL

Attribute
DBPROP_INIT_DATASOURCE
(Required)

Name of the server to connect to. "Data Source"

DBPROP_AUTH_USERID User Name "User ID"
DBPROP_INIT_CATALOG Initial catalog (database) "Initial Catalog"
DBPROP_INIT_PROMPT Prompt mode (designates if the

provider should ask for the missing
information)

This property is not
persisted in the UDL
file.

DBPROP_INIT_PROVIDERSTRING Provider specific attributes "Extended Properties"
DBPROP_INIT_HWND Window handle from the calling

application (is used as a parent
window of the dialog prompting for
the missing information)

This property is not
persisted in the UDL
file.

 Configuration for Data Access 3-3

ECHO OLE DB Specific Attributes
ECHO OLE DB Data Provider supports additional attributes that are set through
the DBPROP_INIT_PROVIDERSTRING property (see the preceding table). These
attributes are listed in the table below.

Specific Attributes
Name Description

Always Return Rowset

Forces statements, such as INSERT, UPDATE, DELETE, CREATE
DATABASE, etc., to return the number of affected rows in the form of a
rowset. This allows you to use these 'non-SELECT statements' within the
Linked Server environment, in combination with the OPENQUERY
function. See section "Pass-Through Queries"in the "OLE DB Server
Environments" chapter for more information.
Example:
Always Return Rowset=True;
Always Return Rowset=False; (default)

Command Timeout

When used, the DBPROP_COMMANDTIMEOUT property is ignored.
Value is in seconds.
Example:
Command Timeout=10;

Defer Execution

When set to true, the provider does not forward the SELECT * FROM
table.. statement to ECHO engine. This statement is automatically
generated by clients, such as SQL Server, DTS (Data Transformation
Services), etc., before any DML statement to obtain metadata information.
Example:
Defer Execution=true;
Defer Execution=false; (default)

Disable Server Selection

Flag indicates that the Server field in the login dialog box is disabled. This
prevents server changes during the connection.
Example:
Disable Server Selection=True;
Disable Server Selection=False; (default)

Identifier Prefixes
(Not supported in Version 2.0
beta)

Flag indicates that names of columns, tables, and catalogs will be prefixed
by "ch_." This handles naming conflicts when object names collide with
client application keywords.
Example:
Identifier Prefixes = True;
Identifier Prefixes = False; (default)

Log File
Full path to the log file.
Example:
Log File = c:\temp\log\choledb.log; (default: no log file)

Historians by GUID
(Not supported in Version 2.0
beta)

Flag indicates that catalog names will be resolved through GUID. By
default, catalog names correspond to IRP (Identity Resolution Plug-in)
names (ECHO 1.3+)
Example:
Historians by GUID = False; (default)
Historians by GUID = True;

3-4 Chapter 3

Name Description

Log Level

The amount of information printed in Log File increases with the Log
Level as follows:
0 (default) : initialization properties, software versions
1: SQL queries, used optimization, query duration
2: OLE DB interfaces
3: OLE DB interfaces – more details
Example:
Log Level=1;

Shorten Primary Keys

This property forces the length of a string column (designed as a primary
key) to be 255. The property is implemented because Microsoft Access
automatically converts such a string column (length > 255) to the data
type 'memo'.
Example:
Shorten Primary Keys=true; (default false)

Time as Double When set to true the columns of the data type time are transformed to the
data type of double. The value is in seconds.

Time Zone

Local: time stamps are in local timezone (default).
Server: time stamps are adjusted according to the time zone of the archive
engine.
UTC: time stamps are in UTC
Time stamps used in WHERE clauses are adjusted according to the given
option as well.
Example:
Time Zone=UTC

 NOTE: Each client application configures the provider in a different way.
See the "Advanced Topics" chapter for more information about clients.

 Configuration for Data Access 3-5

ECHO OLE DB Login Dialog Box
According to the DBPROP_INIT_PROMPT OLE DB property, the ECHO OLE
DB login dialog box appears during the initialization of the provider. This allows
you to select the ECHO Server and enter the ClientID. Additionally, after clicking
Options, you set the Log File (ECHO OLE DB specific attribute) as shown in the
following figure.

3-6 Chapter 3

Universal Data Link (UDL)
A Universal Data Link is a text file with the .udl extension containing the
connection information. This version of the connection information is referred to
as a connection string. This file allows you to reuse the saved information in client
applications.

Creating a UDL File
To create a UDL file, follow the steps below.

1. Open the Windows Explorer.

2. Select the folder in which the udl file is to be created.

3. Right-click in the right pane and create a new text document.

Verify that the file extensions are visible. On the Tools menu, click Folder
Options. On the View tab, deselect the Hide file extensions for known file
types checkbox and click OK.

4. Rename the file and assign it the .udl extension.

 NOTE: On Windows NT 4.0 operating systems, MDAC must be installed
before the UDL file is created.

 Configuration for Data Access 3-7

Editing with the Data Link Properties Dialog Box
Double-click the UDL file in the Windows Explorer, and the Data Link
Properties dialog box appears. This tabbed dialog box, shown below, exposes all
the properties that the selected OLE DB provider supports. The Provider tab
allows you to select the OLE DB Provider. This selection influences the
appearance of other tabs.

3-8 Chapter 3

In the Connection tab, enter the server name and the authentication information
and select the initial catalog. The Echo catalog is the default selection.

 Configuration for Data Access 3-9

The Advanced tab does not contain information supported by the ECHO OLE DB
Data Provider, so this tab is not shown.

The All tab lists all the properties that can be set for the specified provider. Click
Edit Value to change a property value.

3-10 Chapter 3

Connection String Format
When you click OK to close the Data Link Properties dialog box, the connection
string is saved in the UDL file. Its format is as follows.

[oledb]
; Everything after this line is an OLE DB initstring
Provider=CHOLEDB.1; User ID=oledb;Initial Catalog=echo;Data Source=localhost; "Log
File=c:\temp\echo\echo_oledb.log;"

Setting Maximum Processing Time for Queries
Queries on the ECHO archive data tables can be potentially expensive in execution
time; therefore, the timeout per consumer through the
DBPROP_COMMANDTIMEOUT OLE DB property on the command object can be
defined. The query is aborted after the timeout expires and a message is returned
regarding this event.

 NOTE: Each client sets this property in a different way. See the
"Advanced Topics" chapter for more information about clients. The default
value of this property is 60 seconds.

 4-1

Chapter 4
Supported ANSI SQL 92
(Subset)

This chapter describes the SQL syntax that is supported by ECHO OLE DB.

4-2 Chapter 4

SELECT Statements
Syntax

SELECT [ALL | DISTINCT] [TOP integer] SelectExpression [[AS] Alias][, …]
[FROM Table [[INNER] JOIN JoinedTable [[AS] JoinedTableAlias] ON JoinCondition][, …]]
[WHERE WhereCondition]
[GROUP BY GroupByColumn[, …]]
[HAVING HavingCondition]
[ORDER BY OrderByColumn [ASC | DESC][, …]]
[UNION [ALL] SelectExpression [UNION …]]

 NOTE: Square brackets denote optional parts of the statement.

Supported Features

SELECT clause

 ALL and DISTINCT keywords.

 TOP n

 Column aliases with or without the AS keyword.

 Column aliases with an equal sign ("Alias = SelectExpression").

 Star in combination with the table ("Alias SELECT table_alias).*"

FROM clause

 Table aliases with or without the AS keyword.

 Inner joins specified by comma-separated table names.

 Inner joins specified by the INNER, JOIN and ON keywords.

 Nested queries.

GROUP BY clause

 Non-constant and non-aggregate expressions.

HAVING clause

 Condition constructed from aggregate expressions and grouping columns
(grouping columns have to be specified exactly the same way as in the
GROUP BY clause).

ORDER BY clause

 Non-negative integers representing the position of the sorted column in the
SELECT list.

 Qualified or nonqualified column names (need not appear in the SELECT
list); in case of an aggregate query, the column must be specified in the
GROUP BY clause.

UNION clause

 ALL modifier.

 Supported ANSI SQL 92 4-3

Expressions

 Standard SQL numeric functions: abs, acos, asin, cos, exp, log, log10, sin, tan.

 Standard SQL time and date functions: day, hour, minute, month, second,
year.

 Standard SQL string functions: concat (can have 2 or more arguments), lcase,
left, mid, length, right, ucase.

 Aggregate functions: AVG, COUNT(arguments: * - all rows are counted;
column name - rows, in which value of the column is NULL, are not counted),
MAX, MIN and SUM. (all functions support the DISTINCT keyword).

 Arithmetic operators: +, -, *, /, unary + and unary -.

 String operators: +,

 Comparison operators: <, =, <=, >, <>, >=, LIKE (supports both ANSI SQL
wildcard characters ("%" and "_"), IN, NOT IN, IS NULL, IS NOT NULL
and BETWEEN exp. AND exp.

 LIKE operator can contain the ESCAPE 'EscapeCharacter' argument.

 Subqueries (IN, NOT IN and EXISTS operators, ANY and ALL modifiers).

 Boolean operators: AND, NOT, OR.

 Numeric constants: integer numbers, float numbers with or without exponent.

 Character constants in single quotes.

 Symbolic constants: true, false.

 Numeric or character constants represented by a SELECT statement (enclosed
in parentheses).

 Identifiers can be quoted by double quotes, but this is not required.

4-4 Chapter 4

INSERT, UPDATE, DELETE, CREATE/DROP
DATABASE Statements

Syntax

INSERT [INTO] Table (Column[, …]) {VALUES(Value[, …]) | SelectExpression}

 NOTE: Curly brackets denote alternative syntax.

UPDATE Table SET Value = Expression[, …] [WHERE WhereCondition]

DELETE [FROM] Table [WHERE WhereCondition]

CREATE DATABASE DatabaseName [ON (PATH = 'Path' [, SIZE = Size])]

DROP DATABASE DatabaseName

 Supported ANSI SQL 92 4-5

CAST Operator
Syntax

CAST (expression AS data_type)
 Expression any valid expression
 data_type ECHO engine supported data types.

 NOTE: For list of supported data types see section "Supported Data
Types" in the "Catalogs and Tables" chapter.

 5-1

Chapter 5
Catalogs and Tables

This chapter describes the catalogs (databases) that ECHO OLE DB uses.

5-2 Chapter 5

Catalog Usage
ECHO OLE DB tables are divided into several catalogs (databases). The default
catalog, called ECHO, consists of tables containing the configuration data. The
other catalogs represent individual historians (OLE DB Catalog = ECHO
Historian) - catalog names correspond to the ECHO Historian names.
Alternatively, based on the ECHO OLE DB proprietary attribute "Historians by
GUID" (see the "ECHO OLE DB Specific Attributes" section in the
"Configuration for Data Access" chapter), the corresponding globally unique
identifier (GUID) can be used to recognize catalogs.

 NOTE: Enclose the GUID with double quotation marks as shown below:
SELECT * FROM "B8DD90D5-E775-4882-85CB-
4647840A3DB1".data

All available catalogs and tables are listed in the following table.

Catalogs and Tables
Catalog Name Table Name Description Comment

Historians
Each historian represents
a separate catalog. See
the table below.

Can be updated, but
insertions and
deletions cannot be
done.

Metadata Information related to
ECHO node object.

Can be updated, but
insertions and
deletions cannot be
done.

ECHO (tables containing
ECHO configuration data).

Versions

Versions of ECHO
database engine, ECHO
SDK,
ECHO OLE DB

Read only.

Data
Data of all DataStreams.
Value and ValueEx are
Variants

Can be updated.

Data2

Data of all DataStreams.
Contrary to the Data
table variants are broken
to discrete data types.

Can be updated.

Data2 table is
provided for clients
that cannot work with
variants.

DataFiles Represents the ECHO
SDK DataFiles collection

Rows (new
DataFiles) can be
inserted, but updates
and deletions cannot
be done.

ECHO Historian

Alternatively the actual
historian's GUID can be
used.

Enclose GUIDs in double
quotation marks.

DataStreams
Represents the ECHO
SDK DataStreams
collection

Can be updated.

 Catalogs and Tables 5-3

CREATE DATABASE / DROP DATABASE
Statements

The CREATE DATABASE statement creates a new ECHO historian. As a result,
the new ECHO OLE DB catalog appears and the newly created historian is listed
in the Historians table.

Sample SQL Statements

CREATE DATABASE historian1 ON (PATH='c:\echo\historians',SIZE=16000)

The PATH parameter is optional and the default path is determined by the ECHO
installation.

 NOTE: When specified, the PATH parameter must point to an existing
directory that does not contain any previously created historians.

The SIZE parameter specifies the size in KBytes of the first data file for the
created historian. This (first) data file is always created (as a consequence of the
CREATE DATABASE command).

The SIZE parameter is optional (default size is 32Mb).

The DROP DATABASE statement drops the existing historian and a
corresponding row is removed from the Historians table, as well as from the list of
ECHO OLE DB catalogs.

The pertaining data files are deleted.

DROP DATABASE historian1

or depending on the "Historians by GUID" attribute:

DROP DATABASE "BCCB9371-3CF3-4F5C-BBE9-CC2D0D62CEEE"

 NOTE: The "Historians by GUID" attribute is not supported in
Version 2.0 beta.

5-4 Chapter 5

Table Structure- ECHO Catalog

 NOTE: Case is preserved in table names and column names, but the
implemented SQL is case insensitive.

The ECHO catalog contains the following three tables.

 Historians

 Metadata

 Versions

Historians Table Structure

Column Data
Type

Part of
Primary
Key

Can be Set
to Null

Comments 1

CreationTimestamp Timestamp no no Read only.
CriticalPercentFull Int32 no no
CriticalReclamationPercent Int32 no no
Descriptor WString no no
EnableReclamation Bool no no
ExtendedData Variant no yes
FillupStrategy Int32 no no
HighPercentFull Int32 no no
HighReclamationPercent Int32 no no
Identity WString yes no Read only.
LastServerFlushTime Timestamp no no Read only
LogAggressiveReclamationEvents Bool no no
LogCHDatastreamDataCoercionEvents Bool no no
LogCHDatastreamFilterEvents Bool no no
LogCHDatastreamInsertInOrderEvents Bool no no
LogCHDatastreamInsertOutOfOrderEvents Bool no no
LogCHDatastreamManualFlushEvents Bool no no
LogCHDatastreamPropertyModifyEvents Bool no no
LogCHDatastreamRemoveEvents Bool no no
LogCHDatastreamReplaceEvents Bool no no
LogCreateCHDataFileEvents Bool no no
LogCreateCHDatastreamEvents Bool no no
LogDeleteCHDatastreamEvents Bool no no
LogErrorMessages Bool no no
LogGrowCHDataFileEvents Bool no no
LogInfoMessages Bool no no
LogManualFlushEvents Bool no no
LogPropertyModifyEvents Bool no no
LogWarningMessages Bool no no
MaxEntrySize Int32 no no

 Catalogs and Tables 5-5

Column Data
Type

Part of
Primary
Key

Can be Set
to Null

Comments 1

Name WString yes yes
ServerFlushRate Int32 no no
ThrowAwayLimitPercentFull Int32 no no
ThrowAwayScanRate Int32 no no
ThrowAwayScanRatePercent Int32 no no
1 See ECHO SDK CHHistorian object property description for more details.

Sample SQL Statements

The following statement renames the historian.

UPDATE Historians SET Name = 'historian1' WHERE Descriptor = 'DB1'

 NOTE: Renaming the Name column in the Historians table affects the
catalog names.

It is not possible to insert or delete rows in this table. See the "CREATE
DATABASE / DROP DATABASE Statements"section for more information on
this topic.

Metadata Table Structure

Column Data
Type

Part of
Primary Key

Can be Set
to Null

Comments 1

Descriptor WString no no
Identity WString yes no Read only.
IDResolutionPluginIdleTimeout Int32 no yes
IDResolutionPluginIsRegistered Bool no no Read only.
IDResolutionPluginProgID WString no yes Read only.
LogCHHistorianManualFlushEvents Bool no no
LogCHHistorianPropertyModifyEvents Bool no no
LogClientConnections Bool no no
LogHistorianCreateEvents Bool no no
LogHistorianDeleteEvents Bool no no
LogPerfCounterResetEvents Bool no no
LogPropertyModifyEvents Bool no no
LoggingEnabled Bool no no
Name WString yes no Read only.
ServerResponseTimeout Int32 no no
ServerTimeZone WString no no Read only.
1 See the ECHO SDK CHNode object property description for more details.

5-6 Chapter 5

Sample SQL Statements

The following statement renames the descriptor.

UPDATE Metadata SET Descriptor = 'This node runs ECHO version 1.3'

The Metadata table always contains one row, holding information related to the
ECHO node.

Versions Table Structure

Column Data
Type

Part of
Primary Key

Can be Set
to Null

Comments

Build WString no no Item build number.
Descriptor WString no no
HasTimeout Bool no no
Item WString yes no Item name.
Location WString no no Full path to the installation directory.
Timeout Timestamp no yes
Version WString no no Version in the string form.

The Version table is read only. It contains three rows holding information about
versions of ECHO OLE DB, ECHO SDK and the ECHO archive engine.

 Catalogs and Tables 5-7

Table Structure - Historians Catalog
ECHO OLE DB considers each ECHO historian as a catalog. Therefore, there are
as many catalogs as ECHO historians. Each catalog lists the following tables:

 Data

 Data2

 DataFiles

 DataStreams

5-8 Chapter 5

Data Table Structure

Column Data Type Part of
Primary Key

Can be Set
to Null Comments 1

DataIncompatible Bool no no Read only.

DataStreamIdentity WString yes no Foreign Key to
DataStreams table.

DataStreamName WString no yes

Index Int32 yes no
Index of the same
time stamp
succession.

IsTransient Bool no no
Timestamp Timestamp yes no
Value Variant no yes
ValueEx Variant no yes
WasInsertedOutOfOrder Bool no no Read only.
WasReplaced Bool no no Read only.
1 See ECHO SDK CHData object property description for more details.

Sample SQL Statements

The following statement selects all data for one DataStream using a subquery.

SELECT * FROM historian1.Data WHERE DataStreamIdentity IN (SELECT Identity FROM
DataStreams WHERE Name = 'DS_I4')

The following statements insert one value into the ECHO archive. The data stream
GUID (DataStreamIdentity) is taken from the DataStreams table (INSERT into
SELECT construction).

INSERT INTO historian1.Data (DataStreamIdentity,Timestamp,Value) SELECT Identity,
date('27-Mar-2003 16:19:21.1234'),123 FROM historian1.DataStreams WHERE Name = 'DS_I4'

INSERT INTO historian1.data (DataStreamName, Timestamp, Value) VALUES ('DS_I4','16-Mar-
2004',1)

The following statements update a value in ECHO archive.

UPDATE historian1.Data SET Value = 321 WHERE DataStreamIdentity IN (SELECT Identity FROM
historian1.DataStreams WHERE Name = 'DS_I4') AND Timestamp = '27-Mar-2003 16:19:21.1234'

UPDATE data SET Value=1 WHERE DataStreamName = 'DS_I4' AND Timestamp='2004-03-16'

The following statements delete from the ECHO archive.

DELETE FROM historian1.Data WHERE DataStreamIdentity IN
(SELECT Identity FROM historian1.DataStreams WHERE Name = 'DS_I4') Timestamp =
'27-Mar-2003 16:19:21.1234'

DELETE FROM data WHERE DataStreamName = 'DS_I4' AND Timestamp='2004-03-16'

 Catalogs and Tables 5-9

Data2 Table Structure

Column Data
Type

Part of
Primary
Key

Can be
Set to
Null

Comments 1

DataIncompatible Bool no no Read only.

DataStreamIdentity WString yes no Foreign Key to DataStreams
table.

DataStreamName WString no yes

Index Int32 yes no Index of the same time stamp
succession.

IsTransient Bool no no
Timestamp Timestamp yes no Read only.

Value_BOOL Bool no yes Variant type of Value is
VT_BOOL.

Value_BSTR WString no yes Variant type of Value is
VT_BSTR.

Value_CY Int64 no yes Variant type of Value is VT_CY

Value_DATE Timestamp no yes Variant type of Value is
VT_DATE.

Value_I1 Int8 no yes Variant type of Value is VT_I1.
Value_I2 Int16 no yes Variant type of Value is VT_I2.
Value_I4 Int32 no yes Variant type of Value is VT_I4.
Value_R4 Float32 no yes Variant type of Value is VT_R4.
Value_R8 Float64 no yes Variant type of Value is VT_R8.

Value_UI1 UInt8 no yes Variant type of Value is
VT_UI1.

Value_UI2 UInt16 no yes Variant type of Value is
VT_UI2.

Value_UI4 UInt32 no yes Variant type of Value is
VT_UI4.

ValueEx_Bool Bool no yes Variant type of ValueEx is
VT_BOOL.

ValueEx_BSTR WString no yes Variant type of ValueEx is
VT_BSTR.

ValueEx_CY Int64 no yes Variant type of ValueEx is
VT_CY.

ValueEx_DATE Timestamp no yes Variant type of ValueEx is
VT_DATE.

ValueEx_I1 Int8 no yes Variant type of ValueEx is
VT_I1.

ValueEx_I2 Int16 no yes Variant type of ValueEx is
VT_I2.

ValueEx_I4 Int32 no yes Variant type of ValueEx is
VT_I4.

ValueEx_R4 Float32 no yes Variant type of ValueEx is
VT_R4.

5-10 Chapter 5

Column Data
Type

Part of
Primary
Key

Can be
Set to
Null

Comments 1

ValueEx_R8 Float64 no yes Variant type of ValueEx is
VT_R8.

ValueEx_UI1 UInt8 no yes Variant type of ValueEx is
VT_UI1.

ValueEx_UI2 UInt16 no yes Variant type of ValueEx is
VT_UI2.

ValueEx_UI4 UInt32 no yes Variant type of ValueEx is
VT_UI4.

WasInsertedOutOfOrder Bool no no Read only
WasReplaced Bool no no Read only
1 See ECHO SDK CHData object property description for more details.

The Data2 table contains all columns that can be found in the Data table. The
variant columns (Value and ValueEx) are broken into descrete data types. In this
version of ECHO OLE DB provider, only the following variant data types are
supported.

 VT_BOOL

 VT_BSTR

 VT_CY

 VT_DATE

 VT_I1

 VT_I2

 VT_I4

 VT_R4

 VT_R8

 VT_UI1

 VT_UI2

 VT_UI4

Other data types supported by ECHO are transformed to the nearest equivalent of
the types listed above. For example, VT_UI4 is converted to VT_I4.

The Data2 table is implemented in order to support some OLE DB clients that
cannot handle variants. For example, it is not possible to update the variant
columns for clients communicating with ECHO through MS SQL Server Linked
Server. In this case, the Data2 table provides a solution.

 Catalogs and Tables 5-11

DataFiles Table Structure

Column Data
Type

Part of
Primary
Key

Can be Set
to Null

Comments 1

ArchiveNumber Int32 yes no Read only.
BlockSize Int32 no no Read only.
CreationTimestamp Timestamp no no Read only.
FileSize Iint32 no no
FreeBlockCount Int32 no no Read only.
HistorianIdentity WString yes no Read only.
Pathname WString no no Read only.
PercentBlocksUsed Float64 no no Read only.
Status Int32 no no Read only.
TotalBlockCount Int32 no no Read only.
UsedBlockCount Int32 no no Read only.
1 See ECHO SDK CHDataFile object property description for more details.

Sample SQL Statements

The following statement creates a new ECHO data file.

INSERT INTO historian1.DataFiles (Pathname) VALUES ('c:\echo\historians\')

 NOTE: The value specified for Pathname must point to an existing
directory.

5-12 Chapter 5

DataStreams Table Structure

Column Data
Type

Part of
Primary Key

Can be Set
to Null

Comments 1

CreationTimestamp Timesta
mp no no Read only.

DataType WString no no

See the "Supported
Data Types" section
in this chapter for
allowed keywords.

Descriptor WString no no
DiscardDuplicateTimestamps Bool no no
DiscardDuplicateValues Bool no no

EarliestOnlineDate Timesta
mp no yes Read only.

ExtendedData Variant no yes
FutureEditLimit Int32 no no
HasData Bool no no Read only.
Identity WString yes no Read only.

LatestOnlineDate Timesta
mp no yes Read only.

LogDataCoercionEvents Bool no no
LogFilterEvents Bool no no
LogInsertInOrderEvents Bool no no
LogInsertOutOfOrderEvents Bool no no
LogManualFlushEvents Bool no no
LogPropertyModifyEvents Bool no no
LogRemoveEvents Bool no no
LogReplaceEvents Bool no no
Name WString no yes
PastEditLimit Int32 no no
SizeClientWriteCache Int32 no no
ThrowAwayLimit Int32 no no
TimePrecision Int32 no no
1 See ECHO SDK CHDataStream object property description for more details.

 Catalogs and Tables 5-13

Sample SQL Statements

The following statement creates a new ECHO data stream.

INSERT historian1.DataStreams (Name,DataType) VALUES ('DS_I4','VT_I4')

Use these keywords to specify data stream data type when inserting into the
DataStreams table.

 VT_ARRAY

 VT_BOOL

 VT_BSTR

 VT_CY

 VT_DATE

 VT_EMPTY

 VT_I1

 VT_I2

 VT_I4

 VT_INT

 VT_R4

 VT_R8

 VT_UI1

 VT_UI2

 VT_UI4

 VT_UINT

The following statement renames a data stream.

UPDATE historian1.DataStreams SET Name = 'DS_I4_OLD' WHERE name = 'DS_I4'

The following statement deletes a data stream.

DELETE FROM historian1.DataStreams WHERE Name = 'DS_I4_OLD'

5-14 Chapter 5

Supported Data Types
ECHO OLE DB internally maps supported data types to the VT_* (variant) used
in the ECHO-SDK as listed in the table below.

Data Type Mappings

This type maps to ... … this keyword
Bool VT_BOOL
Float32 VT_R4
Float64 VT_R8
Int8 VT_I1
Int16 VT_I2
Int32 VT_I4
Int64 VT_CY
Timestamp VT_DATE
UInt8 VT_UI1
UInt16 VT_UI2
UInt64 VT_UI4
WString VT_BSTR

You can use all the data types listed in the table above in the CAST operator.

Examples

SELECT CAST(Value AS WString) FROM historian1.Data WHERE Timestamp > '01-Jan-2004'
SELECT CAST(Value AS VT_BSTR) FROM historian1.Data WHERE Timestamp > '01-Jan-2004'
..

 Catalogs and Tables 5-15

Supported Time Stamp Formats
VT_UI4 – (UInt32)

The following absolute formats are supported:

"yyyy-mm-dd hh:mm:ss.fr"
"dd-mmm-yyyy hh:mm:ss.fr"

Formats supported in Windows Regional Options.

The provider implements a 'shortcut' to current time '*' star. Relative times can be
expressed as follows: '*-30s, '*-1m', '*-12h', '*-10d'.

You can use the built-in Date() function to explicitly force the conversion to the
Timestamp data type.

Examples

SELECT Date('*')
SELECT Date('*')-Time('30s')
SELECT * FROM historian1.Data WHERE Timestamp > '*-30d'
SELECT Timestamp-Time('1m') FROM historian1.Data WHERE Timestamp > '2004-01-01'

5-16 Chapter 5

Examples of Other Statement Use

Simple Expressions
SELECT 1

SELECT 1 WHERE 1 = 1 ORDER BY 1

SELECT -1+1*1-1/(1+1)

SELECT abs(-1) abs_minus_one, acos(1) acos_one, asin(1) asin_one, cos(3.14)
cos_ch, exp(1) exp_one, log(1) log_one, log10(1) log10_one, sin(3.14) sin_ch,
tan(3.14) tan_ch

SELECT concat('OLE DB Provider', ' ', 'for', ' ', 'ECHO'), 'OLE DB Provider' + ' ' +
'for' + ' ' + 'ECHO'

SELECT lcase('OLE DB Provider'), left('OLE DB Provider', 5), length('OLE DB
Provider'), mid('OLE DB Provider', 5, 1), right('OLE DB Provider', 5), ucase('OLE
DB Provider')

SELECT lcase(left('OLE DB Provider', length('OLE DB Provider') - 5))

SELECT string(1), string(1.0)

SELECT AVG(1) avg_one, COUNT(*) _count, MAX(1) max_one, MIN(1)
min_one, SUM(1) sum_one HAVING COUNT(*) = 1

SELECT 1, 1., 1.1, 1e1, 1.e1, 1.1e1, 1e-1, 1.e-1, 1.1e-1

SELECT acos(2), asin(2), log(-1), log10(-1)

Simple Table Queries
SELECT * FROM Versions

SELECT 1 FROM historian1.DataStreams

SELECT * FROM historian1.Data WHERE
Timestamp = '2003-01-27 15:43:01.1234567'

SELECT * FROM "B8DD90D5-E775-4882-85CB-4647840A3DB1".DataStreams

SELECT COUNT(*) FROM historian1..Data WHERE DataStreamName =
'DS_I4'

SELECT MIN(Timestamp) FROM historian1..Data WHERE DataStreamName =
'DS_I4' AND Value > 90

SELECT * FROM historian1..Data WHERE DataStreamName = 'DS_I4' AND
Timestamp > '*-1d'

SELECT * FROM historian1..Data WHERE DataStreamName = 'DS_I4' AND
Timestamp BETWEEN '*-1d' AND '*-23h'

 Catalogs and Tables 5-17

NULL Values
SELECT * FROM historian1.DataStreams WHERE
EarliestOnlineDate IS NOT NULL

SELECT * FROM Historians WHERE Name IS NOT NULL

DISTINCT
SELECT DISTINCT * FROM historian1.Data WHERE
DataStreamName = 'DS_I4'

SELECT COUNT(DISTINCT Value) FROM historian1.Data

TOP n
SELECT TOP 1 * FROM historian1.Data

SELECT TOP 10 Timestamp,Value FROM historian1.Data WHERE
DataStreamName = 'DS_I4' ORDER BY DataStreamName, Timestamp DESC

GROUP BY, HAVING
SELECT DataStreamName, AVG(Value_R4) average, MAX(Value_R4)
maximum, COUNT(Value_R4) [count] FROM historian1.Data2 WHERE
DataStreamName = 'DS_I4' AND Timestamp > '01-Jan-2004' GROUP BY
DataStreamName

SELECT DataStreamName, MAX(Value_R4) FROM historian1.Data2 WHERE
DataStreamName = 'DS_I4' AND Timestamp > '01-Jan-2004' GROUP BY
DataStreamName HAVING COUNT(Value_R4) > 1

ORDER BY
SELECT * FROM historian1.Data WHERE DataStreamName = 'DS_I4' AND
Timestamp > '01-Jan-2004' ORDER BY Value DESC, ValueEx

Inner Joins
SELECT ds.Name, dat.Timestamp, dat.Value FROM
historian1.Data dat, historian1.DataStreams ds
WHERE ds.Identity = dat.DataStreamIdentity AND ds.Name = 'DS_I4' AND
Timestamp > '01-Jan-2004'

SELECT ds.Name, ds.Descriptor, dat.* FROM historian1.DataStreams ds
JOIN historian1.Data dat ON ds.Identity = dat.DataStreamIdentity WHERE
Timestamp > '01-Jan-2004'

5-18 Chapter 5

Nested Queries
SELECT c1 FROM (SELECT 1 c1) t1

Subqueries
SELECT * FROM historian1.Data WHERE DataStreamIdentity IN (SELECT
Identity FROM historian1.DataStreams WHERE Name = 'DS_I4') AND
Timestamp > '01-Jan-2004'

UNION
SELECT 1 UNION SELECT 1

SELECT 1 UNION ALL SELECT 1

SELECT * FROM historian1.DataStreams UNION ALL
SELECT * FROM historian2.DataStreams ORDER BY earliestonlinedate

INSERT INTO SELECT
INSERT INTO historian1.Data (DataStreamName,Timestamp,Value)
SELECT 'DS2_I4', Timestamp,Value
FROM historian1.Data
WHERE
DataStreamName = 'DS_I4'

 NOTE: The INSERT INTO … SELECT … construction allows you to
copy data from one data stream to another.

 6-1

Chapter 6
ActiveX Data Objects - ADO

This chapter describes the use of the ActiveX Data Objects with the ECHO OLE
DB Data Provider.

6-2 Chapter 6

Description of the ActiveX Data Object
The ADO (ActiveX Data Objects) is a set of high-level Automation interfaces on
top of OLE DB. It simplifies the access to OLE DB data by eliminating the low-
level operations, such as managing memory resources or component aggregation.
ADO provides the following advantages.

 Ease of use – The data-access task analogous to "Hello World" requires only
three lines of code.

 Programming language neutrality – The ADO can be used with languages
such as Visual Basic, Java, C++, VBScript, or JScript.

 Provider neutrality – The ADO can access data from any OLE DB source. In
addition, ADO adapts seamlessly to support less functional OLE DB
providers.

 No loss of OLE DB functionality – The ADO allows C++ developers access
to the underlying OLE DB interfaces.

 ActiveX Data Objects - ADO 6-3

The following figure shows the typical configuration of applications that used
ADO.

 NOTE: All ADO samples provided here use the shaded boxes
"Application - ADO - OLE DB (ECHO OLE DB) - OLE DB Data Source
(ECHO Historian)"

6-4 Chapter 6

ADO Object Model
ADO is made up of seven objects as shown in the following figure.

The Connection, Command, and Recordset objects are top-level objects that you
create and destroy independently of each of the other objects. Although you create
the Parameter object independently of a Command object, it must be associated
with a command before it can be used. The Field, Error, and Property objects exist
only within the context of their parent objects, and cannot be created separately.

The ADO Connection object represents a connection to the source of data. It
defines properties of the connection, assigns the scope of local transactions, and
provides a central location for retrieving errors.

The ADO Command object represents the data-definition or data-manipulation
statement to be executed. In the case of a relational provider, this is an SQL
statement. The Command object allows you to specify parameters and customize
the behavior of the statement to be executed. A collection of Parameter objects
exposes the parameters.

The ADO Recordset object is the actual interface to the data, whether it is the
result of a query or was generated in some other fashion. The Recordset object
provides control over the locking mechanism, the type of cursor, the number of
rows to access at a time, etc.

The Recordset object exposes a collection of Field objects that contain the
metadata about the columns in the recordset, such as name, type, length, and
precision, as well as the actual data values themselves. The Recordset object can
be used to navigate through records and change data (assuming the underlying
provider is updatable).

 ActiveX Data Objects - ADO 6-5

ADO Databinding ActiveX Controls
ADO Databinding ActiveX Controls encapsulate the ADO functionality and allow
the displaying and changing of the underlying data.

There are two types of Databinding ActiveX controls.

 Data-Source Controls – A data-source control encapsulates a database query
and the retrieved rowset. The Microsoft ADO Data Control provides a user
interface consisting of a series of buttons to iterate through the data.

 Data-Bound Controls – A data-bound control presents the data. Data-bound
controls connect to data-source controls to receive data and present the data
through a variety of user interfaces. An example of the data-bound control is
the Microsoft DataGrid Control.

 NOTE: More information about ADO is available on the Microsoft's
Universal Data Access web site at http://www.microsoft.com/data/ado.
Although you can store data in a variety of formats, these formats fall into
two broad categories.

http://www.microsoft.com/data/ado

6-6 Chapter 6

ADO and DBTIMESTAMP
ECHO stores time stamps with up to 100-nanosecond precision. OLE DB uses the
DBTIMESTAMP structure, which allows up to 1-nanosecond time precision.
Because ADO maps the DBTIMESTAMP to a DATE data type that does NOT
implement the subsecond part; seconds are rounded. Most of the data-bound
controls therefore show time stamps with only seconds, even if the underlying
DBTIMESTAMP contains the subsecond part. As of publication, OSIsoft is not
aware of any grid that displays a precision greater than seconds.

 ActiveX Data Objects - ADO 6-7

Samples Provided
All samples are written in Visual Basic (VB). For the result presentation, samples
use Microsoft Databinding ActiveX Controls (Microsoft ADO Data Control and
Microsoft DataGrid Control).

 ADO_Intro – This sample introduces the basic principles of ADO. For the
resulting data set presentation, the Microsoft DataGrid Control is used.

 NOTE: To be opened in design mode, samples require the licensed
version of the Microsoft DataGrid Control. This control is installed (with
the full license) with Microsoft Visual Basic or Microsoft Office
Developer Tools.

 ADO.NET Intro – This simple example describes how to use ECHO OLE DB
provider in a "managed environment."

 ASP - Sample that shows a simple ADO query called from an ASP page (IIS
Web Server required).

ADO Intro Sample
This sample demonstrates the basic principles of ADO. The sample displays the
results of this query in the Microsoft DataGrid Control.

SELECT CreationTimestamp,Name,Descriptor FROM historians

To create the sample, follow the steps below.

1. Run Visual Basic and create a new "Standard EXE" project.

2. Select the Project - References menu item and check the Microsoft ActiveX
Data Objects 2.7 Library in the References dialog box. This loads the ADO
type library into the Visual Basic environment.

3. Select the Project - Components menu item and check the Microsoft
DataGrid Control 6.0 in the Components dialog box. This loads the
DataGrid Control type library into the Visual Basic environment.

4. Click the DataGrid Control icon in the toolbox and place it on the main
form. Change its name to "DataGrid."

5. Add the Form_Load event handler.

6. Enter the following code.
Dim adoCn As New ADODB.Connection
With adoCn
 Provider = "CHOLEDB"
 Properties("Prompt") = adPromptComplete
 Open
End With
Dim adoRs As New ADODB.Recordset
adoRs.Open "SELECT CreationTimestamp,Name,Descriptor
from historians ", adoCn, adOpenStatic,
adLockOptimistic, adCmdText

Set DataGrid.DataSource = adoRs

6-8 Chapter 6

DataGrid.AllowUpdate = True
DataGrid.AllowAddNew = False
DataGrid.AllowDelete = False

7. Save the project and its form as "ADO Intro.frm" and "ADO Intro.vbp."

8. Run the sample.

The following figure illustrates how the running sample appears.

The code that you enter does the following:

1. Create a new ADO Connection object.
Dim adoCn As New ADODB.Connection

2. Open a connection to the ECHO Server through the ECHO OLE DB Data
Provider.
adoCn.Open "Provider=CHOLEDB;"

3. Create a new ADO Recordset object.
Dim adoRs As New ADODB.Recordset

4. Execute the query and save the data in the created Recordset object.
Arguments of the adoRs.Open method are set to the most common values.
adoRs.Open "SELECT CreationTimestamp,Name,Descriptor
FROM orians ", adoCn, adOpenStatic,
adLockOptimistic, adCmdText)

5. Assign the Recordset object to the DataGrid Control.
Set DataGrid.DataSource = adoRs

6. Sets the updatability flags of the DataGrid Control. The DataGrid Control
allows point attribute changes.

The connection string in ADO (first argument of the ADO Connection "Open"
method) is compatible with the UDL file. You can even specify the connection
string to use attributes from the UDL file, for example, "FILE NAME= Test.udl;"

Note that the ADO Command object is not used. This approach is possible when
the command specific properties or methods are not needed.

 ActiveX Data Objects - ADO 6-9

ADO.NET Intro Sample
This sample demonstrates how to use ECHO OLE DB provider in the a "managed
environment." To achieve this, the managed provider for OLE DB providers from
the .NET Framework must be used. The managed provider actually represents a
way from the .NET application to "OLE DB powered datasources".

ADO.NET Intro sample is created using MS Visual Basic.NET and the sample
code does the following.

1. Import the OLE DB layer. The OLE DB .NET Data Provider classes are
located in the System.Data.OleDb namespace.
Imports System.Data.OleDb

2. Open a connection to the ECHO Server through the ECHO OLE DB Data (via
the managed provider for OLE DB providers).
Dim cn As New OleDbConnection()
cn.ConnectionString = "Provider = CHOLEDB; Data
Source = localhost; Log File=c:\temp\echo_net.log;"
cn.Open()

3. Create the ADO.NET command object and assign it the connection.
Dim cmd As New OleDbCommand()
cmd.CommandText =
"SELECT ds.Name,dat.Timestamp,dat.Value,dat.ValueEx
FROM historian1.Data dat,historian1.DataStreams ds
WHERE dat.DataStreamIdentity = ds.Identity AND
ds.name = 'Your_DS Name' "

4. Execute the query. The result set is returned in the form of a data reader
object.
Dim dataReader As OleDbDataReader =
cmd.ExecuteReader()

5. Loop the data reader object extracting the individual records from the result
set and print them onto the console window.

The following figure shows the result.

6-10 Chapter 6

ASP Sample
This sample shows how to instantiate the ECHO OLE DB provider within an IIS
(Internet Information Server) using VBScript language. Data from ECHO is stored
within an ADO recordset (described in the ADO Intro example). Rows from the
ADO recordset are finally displayed in a table within the browser.

To create the sample, follow the steps below.

1. Run the Internet Services Manager and create the new Virtual Directory and
name it ECHO-OLEDB.

2. Copy the echo.asp file into a real directory, to which the Virtual Directory
(specified in step 1) points.

3. Run the Internet Explorer and point to the echo.asp file using the http
protocol.
http://localhost/echo-oledb/echo.asp

http://localhost/echo-oledb/echo.asp

 ActiveX Data Objects - ADO 6-11

MyECHOSQL Sample
This sample, written in C++, executes a batch of SQL queries. Queries can be
written in a text file, which is then pointed in start-up parameters of the
MyECHOSQL.exe. The script_sample.sql creates a new historian, adds several
data streams, writes some data, and then cleans everything up. Results are stored in
script_output.txt.

 NOTE: Create the historian in an existing directory that is empty,
adjusted according to your environment.

CREATE DATABASE hist1 ON
(PATH='c:\echo\historians',SIZE=16000).

UDL Sample
This sample is an example of a UDL (Universal Data Link) file that can be used
for establishing a connection to the ECHO Archive Engine.

 7-1

Chapter 7
OLE DB Server
Environments

This chapter describes server access to OLE DB data sources. The linked server
configuration allows SQL Server to execute commands against OLE DB data
sources on different servers.

7-2 Chapter 7

Microsoft SQL Server Linked Server
Linked Server is a term for a virtual RDBMS server that is linked into Microsoft
SQL Server. The linked server configuration allows the Microsoft SQL Server to
execute commands against OLE DB data sources on different servers.

Linked servers offer these advantages.

 Remote server access.

 Ability to issue distributed queries, updates, commands, and transactions on
heterogeneous data sources across the enterprise.

 Ability to address diverse data sources similarly.

The Linked Servers functionality is available in Microsoft SQL Server 7.0 and
greater.

 NOTE: ECHO OLE DB requires Microsoft SQL Server 2000 to operate
as a Linked Server.

The following figure illustrates the linked server architecture of the Microsoft SQL
Server.

Distributed queries are queries, that access data stored in SQL Server
(homogeneous data) plus data stored in a data store other than SQL Server
(heterogeneous data from SQL Server point of view). Distributed queries operate
as if all data is stored in SQL Server. Each distributed query can reference multiple
linked servers and can perform either update or read operations against each
individual linked server.

 OLE DB Server Environments 7-3

Configuration Through the Enterprise Manager
To define a linked server, specify an OLE DB provider and its data source. The
OLE DB provider DLL must be present on the same server as SQL Server. Do this
either through the SQL Server Enterprise Manager or through stored procedures.
For more information on configuration by stored procedures, refer to the SQL
Server documentation.

To configure a new linked server with the Enterprise Manager, follow the steps
below.

Open the Enterprise Manager

1. Run the Enterprise Manager.

2. On the tree under the Console Root, locate Linked Servers under Microsoft
SQL Servers - SQL Server Group – [Server Name] - Security.

3. Right-click Linked Servers and select New Linked Server, as shown in the
figure below.

4. In the Linked Server Properties dialog box that appears, select the General
tab.

7-4 Chapter 7

The fields of the General tab are shown in the following figure.

5. On the General tab, enter the information into the fields, described in the
following table.

Linked Server Properties – ECHO Dialog Box – General Tab
Field Description Typical Value Remarks
Linked
Server

Name of the linked server
being created. ECHO. Required.

Provider
Name

Name of the OLE DB data
provider. ECHO OLE DB Provider. Required.

Product
Name - - Leave this field blank.

Data
Source Name of the ECHO server.

Enter the appropriate server
name for your application,
localhost for example.

Required.

Provider
String

Corresponds to the UDL
Extended Properties
attribute.
For more, see the "ECHO
OLE DB Specific Attributes"
section in the "Configuration
for Data Access" chapter.

- Optional

Catalog The default catalog. Echo Optional

 OLE DB Server Environments 7-5

Specify Provider Options

Continue the configuration by specifying the provider options.

1. Click Provider Options. The Provider Options – PI OLEDB Provider
dialog box appears.

2. Enter the information into the fields, described in the following table.

3. Then click OK to close the dialog box and return to the General tab.

Provider Options – PI OLEDB Provider Dialog Box
Field Description Supported by ECHO OLE DB

Dynamic
Parameters

Indicates that the provider allows the "?"
parameter marker syntax for parameterized
queries.

Yes

Nested Queries
If nonzero, indicates that the provider allows
nested SELECT statements in the FROM
clause.

Yes

Level Zero
Only

Base level OLE DB interfaces are invoked
against the provider.

Do not select this option; multiple
base level interfaces are
supported.

7-6 Chapter 7

Field Description Supported by ECHO OLE DB

Allow
InProcess

SQL Server allows the provider to be
instantiated as an in-process server. When this
option is not set, the default behavior is to
instantiate the provider outside the SQL Server
process. Instantiating the provider outside the
SQL Server process protects the SQL Server
from errors in the provider and potentially
from crashing.

ECHO OLE DB supports both in-
process and out-of-process
configuration.
In-process configuration runs
faster because the provider is
instantiated within the SQL
Server process itself. Out-of-
process configuration is safer
because the dllhost.exe surrogate
instantiantes it and any possible
provider problem does not affect
the SQL Server core process.

Non-
Transacted
Updates

If nonzero, SQL Server allows updates, even if
the ITransactionLocal interface is not
available.

Do not select this option; the
ITransactionLocal interface is
supported

Index as
Access Path

If nonzero, SQL Server attempts to use indexes
of the provider to fetch data.

No

Disallow ad
hoc Access

If a nonzero value is set, SQL Server does not
allow ad hoc access through the
OPENDATASOURCE and OPENROWSET
functions against the OLE DB provider.

Can be selected.

Specify Security

Continue the configuration by specifying the security options.

1. Click the Security tab. The fields of this tab are shown in the following figure.

2. Enter the information appropriate for your application.

You can specify authentication information separately for each SQL Server
user or for all users. The figure above shows the second approach.

 OLE DB Server Environments 7-7

3. Click the Server Options tab. Enter the information appropriate for your
application.

Of the options in this tab, the Collation Compatible and Query Timeout are
the most important ones for ECHO OLE DB.
Select the Collation Compatible option. This causes SQL Server to assume all
columns and character sets are compatible with the local server character set
and collation, and enables SQL Server to send comparisons on character
columns to the OLE DB provider. Otherwise, SQL Server always evaluates
comparisons on character columns locally.
The Query Timeout option corresponds to the
DBPROP_COMMANDTIMEOUT OLE DB property. For details, see the
"Maximum Processing Time for Queries" section in the "Configuration for
Data Access" chapter.
You can set the other options to their default values.

4. Click OK to close the Linked Server Properties dialog box.

7-8 Chapter 7

User Account and DCOM Settings for OutProc
Instantiation

The process of running a DLL-based COM object outside the address space of the
main application is called remoting. Remoting requires that another executable be
a surrogate process in place of the SQL Server executable. The default executable
used by the DCOM Service Control Manager is named Dllhost.exe. The ECHO
OLE DB provider is instantiated within the address space of the dllhost process
when running as an OutProc. This generates issues regarding security and user
account permissions. When MS SQL Server is connected using the 'SQL Server
authentication' mode, the Dllhost.exe starts in the same user account as the SQL
Server executable (default – LocalSystem). When connected using the 'Windows
authentication' the actual Windows user must have the appropriate access and
launch permissions. In the case of 'SQL Server Authentication' the permissions for
the 'System' user must be addressed.

To change access and launch permissions, follow the steps below.

1. Click Start on the Windows Taskbar, then click Run.

2. Type dcomcnfg in the Run dialog box and click OK. The Distributed
COM Configuration Properties dialog box appears as shown below.

3. On the Applications tab select ECHO OLE DB and click Properties. The
Properties dialog box appears.

 OLE DB Server Environments 7-9

4. On the Security tab, select Use Custom Access Permissions. Click Edit and
assign access to all users who are allowed access to the archive.

5. Select Use Custom Launch Permissions. Click Edit and assign launch
permissions to all users who are allowed to access the archive.

6. Close the dialog boxes.

7-10 Chapter 7

Four-Part Names
SQL Server uses four-part names for an unambiguous identification of the linked
server objects (tables, views, etc.). The four-part name consists of the linked server
name (name specified in the Linked Server Properties dialog box), catalog,
schema, and object. See the figure below.

 OLE DB Server Environments 7-11

Sample SQL Statements
SQL statements accessing data through the linked server are executed the same
way as "ordinary" SQL Server statements. The SQL Server Query Analyzer was
used for internal testing. See the figure below.

Sample statements are listed below.

Queries

SELECT * FROM ECHO.echo..Versions
SELECT * FROM ECHO.echo..Metadata
SELECT * FROM ECHO.echo..Historians
SELECT * FROM ECHO.historian1..DataFiles
SELECT * FROM ECHO.historian1..DataStreams WHERE Name LIKE 'DS%'
SELECT * FROM ECHO.historian1..Data WHERE Timestamp > '01-Dec-2002'
SELECT * FROM ECHO.historian1..Data2 WHERE Timestamp > '01-Dec-2002'

 NOTE: In Query Analyzer, you can cancel (interrupt) any SELECT query
during execution by pressing Alt+Break. Breaking any DML statement is
NOT supported. This means that the by default issued 'SELECT * FROM
table' cannot be stopped. For more, see the "Known Linked Server Issues"
section in this chapter.

7-12 Chapter 7

DML statements

INSERT INTO ECHO.historian1..Data2 (DataStreamIdentity,[Timestamp],Value_I4)
SELECT [Identity],'27-Mar-2003 16:56:01',1 FROM ECHO.historian1..DataStreams WHERE
[Name] = 'DS_I4'

 NOTE: Prior to executing any DML statement, the SQL Server fetches all
table data. Because of this, tables that have many rows (for example,
"data" and "data2") can exhibit slower response times.

To work around the limitation noted above, set the Always Return Rowse; property
("ECHO OLE DB Specific Attributes" section in the "Configuration for Data
Access" chapter.) to true and execute a DML statement using the SQL Server
OPENQUERY function. See Pass-Through Queries in the next section for more
details.

SELECT * FROM OPENQUERY (ECHO,'INSERT INTO historian1..Data

(DataStreamName,[Timestamp],Value) VALUES (''DS_I4'',''16-Mar-2004'',1)')

 OLE DB Server Environments 7-13

Pass-Through Queries
Sometimes it is useful to forward a query to the OLE DB data source "as is,"
bypassing the SQL Server preprocessing. To achieve this, the SQL Server provides
three functions: OPENDATASOURCE, OPENROWSET and OPENQUERY. These
functions can be used in the FROM clause of queries, which are then referred to as
"pass-through" queries.

Syntax for these functions can be found in the SQL Server Books Online
documentation.

Example

SELECT * FROM OPENQUERY(ECHO,'SELECT * FROM historian1.Data')

7-14 Chapter 7

Known Linked Server Issues
The 'Estimated Execution Plan' feature in Query Analyzer can help you verify
which part of the distributed query is sent to the provider, and what is evaluated on
SQL Server side. Two of the Linked Server settings proved to be significant:
‘Collation Compatible' and 'Dynamic Parameters'. The figure below illustrates how
to generate an Execution Plan.

The 'DML Rowset' proprietary setting (see the "ECHO OLE DB Specific
Attributes" section in the "Configuration for Data Access" chapter) allows you to
work with DML statements in the Linked Server environment, and also with larger
tables like Data, Data2. By design, SQL Server always issues the 'SELECT *
FROM table' statement whenever a DML statement is used. DML statements
issued against a bigger 'data holding' table, for example, are likely to time out then.
Setting the 'Always Return Rowset' option to True avoids this behavior by
returning a spurious rowset from DMLs.

 OLE DB Server Environments 7-15

In combination with the SQL Server, the OPENROWSET or the OPENQUERY
functions permit the following construction.

SELECT * FROM

OPENQUERY(ECHO,'INSERT INTO data (DatastreamIdentity, Timestamp, Value) VALUES
(''EB05C85F-6947-46C2-B6BE-C49820BC26FF'', ''19-Dec-2002 13:00:00'', 12345)')

The LIKE expression containing the ESCAPE argument is not forwarded to the
provider.

SELECT * FROM echo.historian1..Data WHERE Value LIKE '\-%OSI\' ESCAPE '-'

To avoid this, use the pass-through query.

SELECT * FROM

OPENQUERY(ECHO,
'SELECT * FROM historian1.Data WHERE Value LIKE ''\-%OSI\'' ESCAPE ''-''')

Variant data type columns like Data.Value, Data.ValueEx,… do not evaluate
properly when used in combination with parameters. SQL Server 2000 transforms
the Variant data type into nVarchar and provides an inappropriate length for a
parameterized query. The result is an empty item. To avoid this, use the Data2
table.

INSERT echo.historian1..Data2
(DataStreamIdentity, Timestamp, Value_I4)
VALUES ('EB05C85F-6947-46C2-B6BE-C49820BC26FF', '19-Dec-2002 13:00:00', 123)

7-16 Chapter 7

Oracle Generic Connectivity
The Oracle 8.1.6i/9i RDBMSs is similar in concept to the MS Linked Server for
accessing heterogeneous data sources. It is called Generic Connectivity. To access
the non-Oracle data stores using Generic Connectivity, the Oracle 'Heterogeneous
Services'- (HS) agents work with ODBC drivers or OLE DB providers. The
driver/provider that you use must be installed on the same platform as the HS
agent. The non-Oracle data stores (MS SQL Server,ECHO…) can reside on the
same machine as the Oracle database server or on a different machine. See the
figure below.

 OLE DB Server Environments 7-17

Configuration of Generic Connectivity
A client connects to the Oracle database server through Oracle Net. The
Heterogeneous Services component of the Oracle database server connects through
Oracle Net to the Heterogeneous Services OLE DB agent, and the agent
communicates with the OLE DB provider.

To configure Generic Connectivity using OLE DB on a Windows NT operating
system, follow the steps below.

1. Create and configure a Microsoft Data Link (.udl) file to connect to the target
datastore. Test the udl to verify connectivity to the target datastore. This udl will
be referenced in the initcholedb.ora file as described later on.

2. Verify that the following entries are in the tnsnames.ora and listener.ora files.
TNSNAMES.ORA

CHOLEDB =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS =
(PROTOCOL = tcp)(host=localhost)(port=1521)))
(CONNECT_DATA =
(SID = CHOLEDB)) <== sid needs to match listener and initHS_SID.ora
(HS=OK)) <== HS clause is placed in the description

LISTENER.ORA

SID_LIST_LISTENER =
(SID_LIST =
(SID_DESC =
(SID_NAME = CHOLEDB) <== matches sid in tnsnames.ora
(ORACLE_HOME = C:\oracle\ora90)
(PROGRAM = hsolesql) <== hsolesql is the agent executable
)
)
(SID_DESC =
(GLOBAL_DBNAME = ECHO)
(ORACLE_HOME = C:\oracle\ora90)
(SID_NAME = ECHO)
)

3. Load the new configuration by entering the following commands in a Command
window.

lsnrctl stop
lsnrctl start

4. Create the initialization file.
Oracle supplies sample initialization files named initagent.ora, where the agent
might be hsodbc or hsoledb to indicate which agent the sample file can be used
for as in the following.
inithsodbc.ora
inithsoledb.ora
The sample files are stored in the $ORACLE_HOME\hs\admin directory.

7-18 Chapter 7

5. To create an initialization file, copy the appropriate sample file and rename the
file to initHS_SID.ora. In this example, the sid noted in the listener and tnsnames
is choledb so the example file is called initcholedb.ora.

The following entries are in the initcholedb.ora located in
$ORACLE_HOME/hs/admin.

HS_FDS_CONNECT_INFO ="UDLFILE=c:\\Oracle\CHOLEDB\\
choledb.udl"
HS_FDS_TRACE_LEVEL = ON
HS_FDS_TRACE_FILE_NAME = choledb.trc

6. Create a database link to access the target database. Use appropriate quotes as
noted below. Replace echouser and echopassword with a valid userid and
password on the target datastore (ECHO), and create a database link to access the
target database as follows.

CREATE PUBLIC DATABASE link CHOLEDB
CONNECT TO "echouser" IDENTIFIED BY "echopassword" USING 'CHOLEDB';

Note that echopassword can be any non-empty string.
More details about the Generic Connectivity concept are outlined in the
document "4i_generic_connectivity.pdf," located on the Oracle Technology
Network. Search for "video31".

7. To test, run a simple query of a known table on the target datastore in Oracle’s
SQL+. Enclose column names in double quotation marks (case sensitivity issue)
when you use the ODBC driver to connect to Oracle. In addition, it is necessary to
set the AUTOCOMMIT mode OFF. Enter the following command and refer to the
figure below.

SELECT COUNT(*) FROM data@choledb WHERE "DataStreamName" = 'sinusoid' AND
"Timestamp" > '01-Jan-2004';

Related Documents

Oracle9i Heterogeneous Connectivity Administrator’s Guide
June 2001
Part No. A88789-01 (a88789.pdf)

 8-1

Chapter 8
Advanced Topics

This chapter describes several methods for viewing and processing data with
several applications and utilities and the ECHO OLE DB Data Provider.

8-2 Chapter 8

OLE DB – ODBC Transformation
To access OLE DB data through ODBC clients, use an OLE DB – ODBC
gateway. In the simplest case, this is a generic ODBC driver for OLE DB data
sources.

Tested OLE DB – ODBC scenarios

These scenarios have been tested, but other products are available.

 MS SQL Server 2000 as ODBC Gateway

 Oracle 8i/9i Generic connectivity

 Attunity Connect

 Microsoft Access 2000 / 2002 as ODBC Client

 Advanced Topics 8-3

MS SQL Server 2000 as ODBC Gateway
Microsoft SQL Server can also serve as an OLE DB – ODBC gateway. To use it
this way, configure a linked server pointing to an ECHO Server through ECHO
OLE DB (see the "Microsoft SQL Server Linked Server" section in the "OLE DB
Server Environments" chapter). Create distributed views "wrapping" its data
(described below). Afterwards, access the created views from any ODBC client
through the Microsoft SQL Server ODBC Driver.

 NOTE: Create the Views in an MS SQL Server Database. This can be a
newly created Database, for example, called ECHOViews, or any existing
one.
To allow updates through ODBC clients, the Microsoft Distributed
Transaction Coordinator (MS DTC) must be running.

Distributed Views

Clients, connected to SQL Server through ODBC (Microsoft SQL Server ODBC
driver) or OLE DB (Microsoft OLE DB provider for SQL Server), cannot directly
access the linked server tables. To avoid this problem, define SQL Server views. It
is also useful to limit the accessible data range at the same time. This makes an
unintentional "SELECT * FROM table" issued by the ODBC client or OLE DB
consumer less disturbing.

 NOTE: Although it appears that Access 2002 allows direct access to
linked servers, it just automates the view creation in the background.

For the view definition, use both direct (using four-part names) and "pass-
through" queries. Direct queries are faster.

Examples

CREATE VIEW dbo.echo_data
AS
SELECT *
FROM ECHO.historian1..Data

CREATE VIEW dbo.echo_data2
AS
SELECT *
FROM OPENQUERY(ECHO, 'SELECT * FROM historian1.Data2')

8-4 Chapter 8

Oracle 8i/9i Generic Connectivity
To use Oracle as an OLE DB – ODBC gateway, configure the Generic
Connectivity as described in the "Oracle Generic Connectivity" section in the
"OLE DB Server Environments" chapter. Use the ODBC client, for example MS
Query, to connect to Oracle, and either specify the SQL query directly, or access
the distributed views within Oracle.

 NOTE: It is not possible to directly edit ECHO tables via MS Query
connected to Oracle.

 Advanced Topics 8-5

Attunity Connect
Attunity Connect (prior to version 3.0 called ISG Navigator) allows you to
configure an ODBC data source (DSN) that accesses OLE DB data. Each such
DSN can contain one or more databases (OLE DB catalogs). So configure it to
represent all the catalogs in ECHO OLE DB.

A trial version of Attunity Connect can be downloaded from www.Attunity.com.

 NOTE: Each Attunity DSN contains one database named "sys" by
default. This database can be ignored.

http://www.attunity.com/

8-6 Chapter 8

Microsoft Access 2000 / 2002 as ODBC Client
Access is a very flexible RDBMS, distributed as a part of the Microsoft Office
suite. It allows you to link ODBC tables and views into its database engine to work
with its native data. To link an ODBC table or view, follow the steps below.

1. Run Access and create a blank Access database.

2. On the File menu, click Get External Data. Then click Link Tables. The
Link dialog box appears.

3. In the Files of Type field, select ODBC Databases. The Select Data Source
dialog box appears.

4. Select the appropriate ODBC data source. This can be a DSN for MS SQL
Server 2000, a DSN for Oracle or a DSN for Attunity Connect.

5. In the Link Tables dialog box, select the tables to link.

6. In the Select Unique Record Identifier dialog box, select the table primary
key columns.

For editing data, Access requires a primary key to be specified.
It is recommended that you avoid editing large tables through MS Access and
MS SQL Server. This is because SQL Server always generates the "SELECT *
FROM table" query before any DML statement. For details, see the "Known
Linked Server Issues" section in the "OLE DB Server Environments" chapter.

7. Open the table. Refer to the figure below.

 NOTE: MS Access 2002/2003 can also directly connect to an OLE DB
datasource but only to the Microsoft OLE DB Provider for SQL Server.

 Advanced Topics 8-7

Microsoft Excel 2000 / 2002
Microsoft Office 2000 introduced a new technology, Office Web Components, that
allows interactivity to be added to Excel charts, spreadsheets, and pivot tables
saved in HTML format. The Office Web Components have been further updated
for Microsoft Office XP.

To import data from ECHO OLE DB tables, follow the steps below.

1. Run Excel.

2. On the Data menu, click Import External Data.

3. In the Select Data Source dialog box that appears, click New Source Data
Connection wizard.

4. Select Other/Advanced, and choose ECHO OLE DB Provider.

5. Fill In the UDL connection dialog box.

6. Select the table to which you want to connect, and click OK.

The connection information is stored within an HTML ODC (Office Data
Connection) file. Open the ODC file to view the resultset in the Internet Explorer
in a fully updateable spreadsheet component.

Do not select from tables that have a large number of records, the data table, for
example, without a where condition. The ODC file can be modified to execute a
specific query as follows.

<odc:CommandType>SQL</odc:CommandType>
<odc:CommandText>SELECT * FROM historian1.Data WHERE Timestamp >='01-Jan-2004'
</odc:CommandText>

8-8 Chapter 8

When you open an HTML document containing Office Web Components in
Internet Explorer, it is possible to interact with the information on the page. For
example sort, filter, and enter values for formula calculations. Refer to the
following figure.

It is possible to export data to Excel from the Internet Explorer. You can also
import data from within Excel; on the Data menu, click Get External Data and
select the ODC file.

Right click the imported data range to specify a background refresh frequency, so
that the data is refreshed periodically .

 Advanced Topics 8-9

RowsetViewer
RowsetViewer is one of the basic OLE DB testing components provided to
develop and test OLE DB providers. It ships with the Microsoft Data Access SDK
and the Microsoft Platform SDK.

RowsetViewer communicates with OLE DB providers directly through OLE DB
interfaces. This helps to diagnose the problems directly in the provider without
interference from OLE DB consumers or ODBC client problems.

 NOTE: If it is unclear whether a problem is caused by a consumer (there
are many scenarios a consumer can follow while accessing an OLE DB
provider) or the provider itself, try your queries first in RowsetViewer.

8-10 Chapter 8

Connection
To establish a connection through ECHO OLE DB, on the File menu, click Full
Connect. Then fill in the Full Connect dialog box. See the figure below.

 Advanced Topics 8-11

SQL Statement Execution
To execute an SQL statement, type it into the input window and click SQL. In the
ICommand::Execute dialog box, click OK to confirm the statement. Refer to the
figure below.

Note that a query timeout can be specified. Click Properties and set the
DBPROP_COMMANDTIMEOUT property appropriately.

The RowsetViewer shows the subsecond part on the DBTYPE_DBTIMESTAMP
data type column to a 100 ns precision.

8-12 Chapter 8

MS SQL Reporting Services
Microsoft SQL Server 2000 Reporting Services is a server-based reporting
platform that can be used to create reports with data from relational data sources,
including those that are accessible through OLE DB interface.

 NOTE: Reporting Services is part of SQL Server 2000 license. For more
information see: http://www.microsoft.com/sql/reporting

The following list of features highlights Reporting Services strengths:

 Connections to many different data sources
(MS SQL Server, Oracle, IBM DB2, OLE DB, ODBC,etc) and combine
disparate data into comprehensive report.

 Drag-and-drop development environment with no programming is needed.

 Rich formatting capabilities; a report can be transformed into a variety of
formats like XML, Excel, PDF, graphic, Comma Separated File, etc.

 reports can be customized and delivered by way of subscription. For example
reports are sent to an e-mail recipient in case a value exceeded its limit.

 Only a web browser is required for a client.

Example

Simple report generated and deployed to IIS (Internet Information Server) in MS
Visual Studio .NET without any programming.

http://www.microsoft.com/sql/reporting

 9-1

Chapter 9
Troubleshooting

This chapter describes the most important troubleshooting tools and techniques
available for the ECHO OLE DB Data Provider.

9-2 Chapter 9

Error Messages
Error reporting in ECHO OLE DB complies with standard Automation and OLE
DB error handling. Each interface method reports a return code indicating whether
the method succeeded or failed. In addition, ECHO OLE DB exposes OLE DB
error objects that contain extended error information, such as the detailed
description of the error. Error objects can be created by any interface on any
ECHO OLE DB object.

ECHO OLE DB divides error messages according to the source of a problem:

 Initialization errors – Connection problems, DLL loading errors, etc.

 General errors – Unsupported COM interfaces, out of memory, etc.

 SQL errors – Parsing errors.

 ECHO SDK errors.

The following figure shows an ECHO OLE DB error message indicated by the
Rowset Viewer tool.

 NOTE: Error messages and warnings are printed into the specified Log
file independent of the Log Level specified.

 Troubleshooting and Known Limitations 9-3

Log File
Some client applications (Microsoft SQL Server, for example) optimize execution
of SQL statements. Consequently, statements actually executed by the OLE DB
Data Provider do not necessarily match the original ones. Therefore, ECHO OLE
DB allows you to create a log file that records executed statements and error
messages.

Configure the log file through the DBPROP_INIT_PROVIDERSTRING OLE DB
property (Extended Properties UDL property). For details, see the "Configuration
Attributes" section in the "Configuration for Data Access" chapter.

The log file is assigned a version (a number is added at the end of the file name),
and a new version is created when the provider is instantiated. Therefore, many log
files can accumulate in the specified directory. It is recommended that you remove
these files when they are no longer needed.

To increase the amount of logged information, change the setting of the Log Level
property. The supported levels are 0-3. The higher the number, the more
information that is printed.

 A-1

Appendix A
Tested OLE DB Clients

This appendix lists the clients that have been tested with the OLE DB Data
Provider.

A-2 Appendix A

Clients Tested

Client Version
ADO 2.7
ADO.NET
Microsoft .NET Framework 1.0
Microsoft Visual Studio .NET

1.0.3705
Hotfix (325790)

ComponentOne True DBGrid 7.0.0.272
Microsoft Excel 2002 (through Office Data Connection) 10.2614.2625
Microsoft Data Grid 6.0.89.88
Microsoft SQL Server 2000 (through Linked Server)
ODBC Driver for MS SQL Server

2000.80.534.0
2000.81.9031.14

Microsoft Visual Studio .NET (Server Explorer)
Oracle 9i (through Generic Connectivity)
ODBC Driver for Oracle

9.0.1.0
9.00.15.00

Rowset Viewer (part of MS platform SDK) 02.00.2905.0

 G-1

Glossary

G-2 Glossary

Glossary of Terms
ActiveX Data Objects (ADO)

ActiveX Data Objects (ADO) is a set of high-level Automation interfaces on
top of OLE DB. It significantly simplifies the access to the OLE DB data by
eliminating low-level operations like managing memory resources or
component aggregation.

Catalog-

OLE DB uses three-part names for naming of tables. "Catalog" (some
RDBMS use "Database" as a synonym) is the first part
("catalog.schema.table") and is intended to logically group tables. See also
Relational Database Management System.

Connection String

For ADO and UDL, the "connection string" is a string containing the
information necessary to establish a connection via OLE DB. See also
Universal Data Link, ActiveXDataObjects.

Data Definition Language (DDL)

A language used for defining attributes of a database, e.g. table structures
or views. In SQL, there's a set of statements serving for this purpose,
sometimes referred to as SQL DDL (e.g. CREATE TABLE and DROP
TABLE statements). See also Structured Query Language.

Data Manipulation Language (DML)

A language used to insert data in, update, and query a database. In SQL,
there's a set of statements serving for this purpose, sometimes referred to
as SQL DML (INSERT, UPDATE, DELETE., and SELECT statements).
See also Structured Query Language.

Data Source Name (DSN)

A Data Source Name (DSN) is a name assigned to an ODBC data source.
Applications can use DSNs to request a connection to a data source via
ODBC. See also ODBC Data Source.

Database

See definition of Catalog.

Distributed Query

For Microsoft SQL Server, distributed query is a query that accesses data
stored in SQL Server (homogeneous data) plus data stored in a data store
other than SQL Server (heterogeneous data).

Generic Connectivity

For Oracle 8i,9i, similar concept as "Linked Server" within Microsoft SQL
Server.

 Glossary G-3

Linked Server

For Microsoft SQL Server, "Linked Server" is a term for a virtual RDBMS
server that can be defined within the SQL Server to access OLE DB data
sources. The linked server configuration allows SQL Server to execute
commands against OLE DB data sources on different servers.

Microsoft Data Access Components (MDAC)

A toolkit that includes key technologies to enable Universal Data Access
(UDA). MDAC consists of the latest versions of ADO, OLE DB, and ODBC.
For more information about these technologies, see "Data Access
Services" in the Platform SDK or www.microsoft.com/data/. See also
ActiveX Data Objects, OLE DB, Open Database Connectivity.

Microsoft Distributed Transaction Coordinator (MS DTC)

The Microsoft Distributed Transaction Coordinator (MS DTC) is a
transaction manager that allows client applications to include several
different sources of data in one transaction. MS DTC coordinates
committing the distributed transaction across all the servers enlisted in the
transaction.

Microsoft Management Console (MMC)MMC is a common console
framework for system management applications. The primary goal of MMC
is to simplify administration and integrate administrative tools. MMC hosts
administrative tools (called MMC snap-ins); however, the console itself
provides no management functionality.

Microsoft SQL Server

A high-performance relational database management system for Microsoft
Windows NT Server-based systems. Designed to meet the requirements of
enterprise client/server computing and the Internet, SQL Server is tightly
integrated with the Microsoft BackOffice family of servers. . For more
information, see "Data Access Services" in the Platform SDK or
www.microsoft.com/sql/. See also Relational Database Management
System.

ODBC Data Source

A data source that can be accessed using an ODBC driver. Also, a stored
definition that contains all of the connection information an ODBC
application requires to connect to the data source. See also Data Source
Name.

OLAP

OnLine Analytical Processing is a technology that enables client
applications access data in Data Warehouses.

OLE DB

OLE DB is a set of COM interfaces that provide applications with uniform
access to data stored in diverse information sources and that also provide
the ability to implement additional database services. These interfaces
support the amount of Database Management System (DBMS)

http://www.microsoft.com/data/
http://www.microsoft.com/sql/

G-4 Glossary

functionality appropriate to the data store, enabling it to share its data. See
also Open Database Connectivity.

OLE DB Data Consumer

Any software that calls and uses the OLE DB application programming
interface (API). See also OLE DB.

OLE DB Data Provider

A software component that exposes OLE DB interfaces. Each OLE DB
provider exposes data from a particular type of data source (for example
SQL Server databases, Access databases, or Excel spreadsheets). See
also OLE DB.

OLE DB Service Provider

A software component, which extends the functionality of OLE DB data
providers by implementing extended interfaces, not natively supported by
the data stores; such as query processors, cursor engines, and
synchronization service. See also OLE DB Data Provider.

Open Database Connectivity (ODBC)

A data access application programming interface (API) that supports
access to any data source for which an ODBC driver is available. ODBC is
aligned with the American National Standards Institute (ANSI) and
International Organization for Standardization (ISO) standards for a
database Call Level Interface (CLI).

Relational Database Management System (RDBMS)

The RDBMS presents the data as tables that consist of rows and columns.
Typically, the RDBMS supports SQL to retrieve and update the data. The
RDBMS also manages user access to the data. Microsoft SQL Server and
Oracle are examples of an RDBMS that stores relational data.

Structured Query Language (SQL)

A language used to insert, retrieve, modify, and delete data in a relational
database. SQL is the language supported by most relational databases,
and is the subject of standards published by the International Standards
Organization (ISO) and the American National Standards Institute (ANSI).
SQL Server 2000 uses a version of the SQL language called Transact-
SQL.

Universal Data Access (UDA)

Universal Data Access (UDA) is a new Microsoft architecture that provides
high-performance access to a variety of data formats (both relational and
non-relational) on multiple platforms across the enterprise.

Universal Data Link (UDL)

Universal Data Link is a text file with the ".udl" extension containing the
information necessary to establish a connection via OLE DB. This version
of the connection information is referred to as a connection string). See
also Connection String.

 Index I-1

Index

A
ActiveX Data Object. See ADO
ADO

Databinding ActiveX Controls, 6-5
DBTIMESTAMP, 6-6
Defined, 6-2
Example Tools, 6-7
Object Model, 6-4

ADO.NET Intro Example Tool, 6-7
ADO_Intro Example Tool, 6-7
Architecture

OLE DB, 1-3
Universal Data Access, 1-3

ASP Example Tool, 6-7
Attributes

Configuration, 3-2
Specific, 3-3,3-5

Attunity Connect
ODBC Client, 8-5

C
Catalog

Defined, 5-2
ECHO, 5-4
Historians, 5-7

Clients
ODBC, 8-2

RowsetViewer, 8-9
Configuration

Attributes, 3-2
Configuring the Connection, 3-2,3-6
Connection

Attributes, 3-2
String, 3-6,3-10

CREATE DATABASE Statement, SQL, 4-4,5-3

D
Data Consumer, 1-3,1-4
Data Provider, 1-3,1-4
Data Table, 5-7
Data2 Table, 5-7
Database

Non-Relational, 1-5
Relational, 1-5

DataFiles Table, 5-7
DataStreams Table, 5-7
DELETE Statement, SQL, 4-4
DROP DATABASE Statement, SQL, 4-4,5-3

E
ECHO OLE DB

Described, 1-2
Error Messages, 9-2
Example Tools, 2-3,6-7
Expressions, SQL, 4-3

F
Four-Part Names. See Linked Server Four-Part

Names

G
Generic Connectivity

Architecture, 7-16
Configuring, 7-17
ODBC Client, 8-4

H
Hardware Requirements, 2-2
Historians Table, 5-4

I
INSERT Statement, SQL, 4-4
Installing ECHO OLE DB, 2-2

L
Linked Server

Architecture, 7-2
Configuring, 7-3
Distributed Queries, 7-2

I-2 Index

Four-Part Names, 7-10
Known Issues, 7-14
ODBC Client, 8-3
Pass-Through Queries, 7-13
User Account/DCOM Settings, 7-8

Log File, Specific Attribute, 3-5
Log File, Troubleshooting and, 9-3

M
Metadata Table, 5-4
Model

ADO, 6-4
MS Access

ODBC Client, 8-6
MS SQL Server Linked Server. See Linked

Server

O
ODBC Clients, 8-2
OLE DB

Architecture, 1-3
Catalogs, 5-2
Data Consumer, 1-3,1-4
Data Provider, 1-3,1-4
Described, 1-3
Example Tools, 2-3,6-7
Installing, 2-2
Requirements, 2-2
Service Provider, 1-3
Uninstalling, 2-2

P
Pass-Through Queries. See Linked Server Pass-

Through Queries

R
Relational Database, 1-5
Requirements, Software, 2-2
Requirements, System, 2-2
RowsetViewer, 8-9

S
SELECT Statements, SQL, 4-2
Service Provider, 1-3
Specific Attributes, 3-3

Log File, 3-5
SQL

CREATE DATABASE Statement, 4-4,5-3
DELETE Statement, 4-4
DROP DATABASE Statement, 4-4,5-3
Expressions, 4-3
INSERT Statement, 4-4
SELECT Statements, 4-2
Statement Examples, 4-2,5-16,7-11

UPDATE Statement, 4-4
System Requirements, 2-2

T
Table

Data, 5-7
Data2, 5-7
DataFiles, 5-7
DataStreams, 5-7
Historians, 5-4
Metadata, 5-4
Versions, 5-4

Troubleshooting, 9-2

U
Uninstalling OLE DB, 2-2
Universal Data Access

Architecture, 1-3
Universal Data Link (UDL), 3-6,3-10
UPDATE Statement, SQL, 4-4

V
Versions Table, 5-4

	ECHO OLE DB Data Provider User's Guid
	Contents
	Chapter 1�Introduction
	Product Overview
	Introduction to OLE DB

	Chapter 2�Installation
	Installation / Uninstallation Guidelines

	Chapter 3�Configuration for Data Access
	Configuration Attributes
	ECHO OLE DB Specific Attributes
	ECHO OLE DB Login Dialog Box
	Universal Data Link (UDL)

	Chapter 4�Supported ANSI SQL 92 (Subset)
	SELECT Statements
	INSERT, UPDATE, DELETE, CREATE/DROP DATABASE Statements
	CAST Operator

	Chapter 5�Catalogs and Tables
	Catalog Usage
	CREATE DATABASE / DROP DATABASE Statements
	Table Structure- ECHO Catalog
	Table Structure - Historians Catalog
	Supported Data Types
	Supported Time Stamp Formats
	Examples of Other Statement Use

	Chapter 6�ActiveX Data Objects - ADO
	Description of the ActiveX Data Object
	ADO Object Model
	ADO Databinding ActiveX Controls
	ADO and DBTIMESTAMP
	Samples Provided

	Chapter 7�OLE DB Server Environments
	Microsoft SQL Server Linked Server
	Oracle Generic Connectivity

	Chapter 8�Advanced Topics
	OLE DB – ODBC Transformation
	Microsoft Excel 2000 / 2002
	RowsetViewer
	MS SQL Reporting Services

	Chapter 9�Troubleshooting
	Error Messages
	Log File

	Appendix A�Tested OLE DB Clients
	Clients Tested

	Glossary
	Glossary of Terms

	Index

