

PTQ-ADM
'C' Programmable

‘C’ Programmable Network Interface
Module for Quantum

 February 20, 2013

DEVELOPER GUIDE

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions, comments,
compliments or complaints about our products, documentation, or support, please write or call us.

ProSoft Technology

5201 Truxtun Ave., 3rd Floor
Bakersfield, CA 93309
+1 (661) 716-5100
+1 (661) 716-5101 (Fax)
www.prosoft-technology.com
support@prosoft-technology.com

Copyright © 2013 ProSoft Technology, Inc., all rights reserved.

PTQ-ADM Developer Guide

February 20, 2013

ProSoft Technology
®
, ProLinx

®
, inRAx

®
, ProTalk

®
, and RadioLinx

®
 are Registered Trademarks of ProSoft

Technology, Inc. All other brand or product names are or may be trademarks of, and are used to identify products
and services of, their respective owners.

In an effort to conserve paper, ProSoft Technology no longer includes printed manuals with our product shipments.
User Manuals, Datasheets, Sample Ladder Files, and Configuration Files are provided on the enclosed CD-ROM,
and are available at no charge from our web site: www.prosoft-technology.com.

Content Disclaimer

This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of
these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate
and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or
use thereof. Neither ProSoft Technology nor any of its affiliates or subsidiaries shall be responsible or liable for
misuse of the information contained herein. Information in this document including illustrations, specifications and
dimensions may contain technical inaccuracies or typographical errors. ProSoft Technology makes no warranty or
representation as to its accuracy and assumes no liability for and reserves the right to correct such inaccuracies or
errors at any time without notice. If you have any suggestions for improvements or amendments or have found errors
in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including
photocopying, without express written permission of ProSoft Technology. All pertinent state, regional, and local safety
regulations must be observed when installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform repairs to components. When
devices are used for applications with technical safety requirements, the relevant instructions must be followed.
Failure to use ProSoft Technology software or approved software with our hardware products may result in injury,
harm, or improper operating results. Failure to observe this information can result in injury or equipment damage.

© 2013 ProSoft Technology. All rights reserved.

Printed documentation is available for purchase. Contact ProSoft Technology for pricing and availability.

North America: +1.661.716.5100

Asia Pacific: +603.7724.2080

Europe, Middle East, Africa: +33 (0) 5.3436.87.20

http://www.prosoft-technology.com/

Information for ProTalk® Product Users

The statement "power, input and output (I/O) wiring must be in accordance with Class I, Division 2 wiring methods
Article 501-10(b) of the National Electrical Code, NFPA 70 for installations in the U.S., or as specified in section 18-
1J2 of the Canadian Electrical Code for installations within Canada and in accordance with the authority having
jurisdiction".

The following or equivalent warnings shall be included:

A Warning - Explosion Hazard - Substitution of components may Impair Suitability for Class I, Division 2;
B Warning - Explosion Hazard - When in Hazardous Locations, Turn off Power before replacing Wiring Modules,

and
C Warning - Explosion Hazard - Do not Disconnect Equipment unless Power has been switched Off or the Area is

known to be Nonhazardous.
D Caution: The Cell used in this Device may Present a Fire or Chemical Burn Hazard if Mistreated. Do not

Disassemble, Heat above 100°C (212°F) or Incinerate.

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.

AVERTISSEMENT - RISQUE D'EXPLOSION - AVANT DE DÉCONNECTER L'ÉQUIPEMENT, COUPER LE
COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DÉSIGNÉ NON DANGEREUX.

Class I, Division 2 GPs A, B, C, D

II 3 G

Ex nA IIC X

0° C <= Ta <= 60° C

II - Equipment intended for above ground use (not for use in mines).

3 - Category 3 equipment, investigated for normal operation only.

G - Equipment protected against explosive gasses.

Warnings

North America Warnings

A Warning - Explosion Hazard - Substitution of components may impair suitability for Class I, Division 2.
B Warning - Explosion Hazard - When in hazardous locations, turn off power before replacing or rewiring modules.

Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the area is
known to be non-hazardous.

C Suitable for use in Class I, Division 2 Groups A, B, C and D Hazardous Locations or Non-Hazardous Locations.

ATEX Warnings and Conditions of Safe Usage:

Power, Input, and Output (I/O) wiring must be in accordance with the authority having jurisdiction.

A Warning - Explosion Hazard - When in hazardous locations, turn off power before replacing or wiring modules.
B Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the area is

known to be non-hazardous.
C These products are intended to be mounted in an IP54 enclosure. The devices shall provide external means to

prevent the rated voltage being exceeded by transient disturbances of more than 40%. This device must be used
only with ATEX certified backplanes.

D DO NOT OPEN WHEN ENERGIZED.

Electrical Ratings

 Backplane Current Load: 1100 mA maximum @ 5 Vdc ± 5%
 Operating Temperature: 0°C to 60°C (32°F to 140°F)
 Storage Temperature: -40°C to 85°C (-40°F to 185°F)
 Shock: 30 g operational; 50 g non-operational; Vibration: 5 g from 10 to 150 Hz
 Relative Humidity: 5% to 95% (without condensation)
 All phase conductor sizes must be at least 1.3 mm(squared) and all earth ground conductors must be at least

4mm(squared).

Markings:

CSA/cUL C22.2 No. 213-1987

CSA CB Certified IEC61010

ATEX EN60079-0 Category 3, Zone 2
EN60079-15

 243333

Important Notice:

CAUTION: THE CELL USED IN THIS DEVICE MAY PRESENT A FIRE
OR CHEMICAL BURN HAZARD IF MISTREATED. DO NOT
DISASSEMBLE, HEAT ABOVE 100°C (212°F) OR INCINERATE.

Maximum battery load = 200 μA.

Maximum battery charge voltage = 3.4 VDC.

Maximum battery charge current = 500 μA.

Maximum battery discharge current = 30 μA.

PTQ-ADM ♦ 'C' Programmable Contents
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 5 of 239
February 20, 2013

Contents

Your Feedback Please .. 2
Content Disclaimer .. 2
Information for ProTalk

®
 Product Users .. 3

Warnings ... 3
Important Notice: ... 4

1 Start Here 11

1.1 Hardware and Software Requirements ... 12
1.1.1 Package Contents ... 12
1.1.2 Recommended Compact Flash (CF) Cards .. 13

1.2 Information for Concept Version 2.6 Users ... 14
1.2.1 Installing MDC Configuration Files .. 14

2 Configuring the Processor with Concept 17

2.1 Create a New Project .. 18
2.2 Add the PTQ Module to the Project .. 20
2.3 Set up Data Memory in Project ... 22
2.4 Download the Project to the Processor ... 24
2.5 Verify Successful Download .. 27

3 Configuring the Processor with ProWORX 31

4 Configuring the Processor with Unity Pro 35

4.1 Create a New Project .. 36
4.2 Add the PTQ Module to the Project .. 38
4.3 Build the Project .. 40
4.4 Connect Your PC to the Processor ... 41

4.4.1 Connecting to the Processor with TCPIP .. 43
4.5 Download the Project to the Quantum Processor ... 44

5 Setting Up the ProTalk Module 45

5.1 Install the ProTalk Module in the Quantum Rack .. 46
5.1.1 Verify Jumper Settings .. 46
5.1.2 Inserting the 1454-9F connector ... 46
5.1.3 Install the ProTalk Module in the Quantum Rack .. 47
5.1.4 Cable Connections .. 48

6 Introduction to PTQ-ADM 53

6.1 Operating System .. 54

Contents PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 6 of 239 ProSoft Technology, Inc.
 February 20, 2013

7 Understanding the PTQ-ADM API 55

7.1 API Libraries ... 56
7.1.1 Calling Convention .. 56
7.1.2 Header File ... 56
7.1.3 Multithreading Considerations .. 56

7.2 Development Tools ... 57
7.3 Theory of Operation .. 58

7.3.1 ADM API ... 58
7.3.2 ADM API Architecture ... 58
7.3.3 PTQ Big I/O Backplane Model Theory of Operation... 58

7.4 Database ... 60
7.5 RS-485 Programming Note .. 61

7.5.1 Hardware .. 61
7.5.2 Software .. 62

8 Setting Up Your Development Environment 63

8.1 Setting Up Your Compiler ... 64
8.1.1 Configuring Digital Mars C++ 8.49.. 64
8.1.2 Configuring Borland C++5.02 ... 74

8.2 Creating a ROM Disk Image ... 82
8.2.1 WINIMAGE - Windows Disk Image Builder .. 82

8.3 Downloading a ROM Disk Image .. 84
8.3.1 MVIUPDAT ... 84

8.4 PTQ System BIOS Setup ... 85
8.5 Transferring Files to and from the Module with HyperTerminal 87

8.5.1 Required Hardware ... 87
8.5.2 Required Software .. 87
8.5.3 Connecting to the Module ... 88
8.5.4 Enabling the Console .. 89
8.5.5 Installing RY.exe and SY.exe ... 93
8.5.6 Downloading Files From a PC to the ADM Module .. 94
8.5.7 Uploading files from the ADM module to a PC ... 95

8.6 Debugging Strategies ... 95

9 Application Development Libraries 97

9.1 ADM API Functions .. 98
9.2 ADM API Initialization Functions... 100

ADM_Open .. 100
ADM_Close ... 101

9.3 ADM API Debug Port Functions ... 102
ADM_ProcessDebug ... 102
ADM_DAWriteSendCtl .. 103
ADM_DAWriteRecvCtl .. 104
ADM_DAWriteSendData ... 105
ADM_DAWriteRecvData ... 106
ADM_ConPrint .. 107
ADM_CheckDBPort ... 108

9.4 ADM API Database Functions .. 109
ADM_DBOpen ... 109
ADM_DBClose .. 110

PTQ-ADM ♦ 'C' Programmable Contents
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 7 of 239
February 20, 2013

ADM_DBZero ... 111
ADM_DBGetBit .. 112
ADM_DBSetBit .. 113
ADM_DBClearBit ... 114
ADM_DBGetByte ... 115
ADM_DBSetByte ... 116
ADM_DBGetWord .. 117
ADM_DBSetWord .. 118
ADM_DBGetLong .. 119
ADM_DBSetLong ... 120
ADM_DBGetFloat .. 121
ADM_DBSetFloat ... 122
ADM_DBGetDFloat .. 123
ADM_DBSetDFloat .. 124
ADM_DBGetBuff .. 125
ADM_DBSetBuff .. 126
ADM_DBGetRegs .. 127
ADM_DBSetRegs .. 128
ADM_DBGetString ... 129
ADM_DBSetString ... 130
ADM_DBSwapWord .. 131
ADM_DBSwapDWord .. 132
ADM_GetDBCptr ... 133
ADM_GetDBIptr ... 134
ADM_GetDBInt .. 135
ADM_DBChanged ... 136
ADM_DBBitChanged ... 137
ADM_DBOR_Byte ... 138
ADM_DBNOR_Byte ... 139
ADM_DBAND_Byte ... 140
ADM_DBNAND_Byte... 141
ADM_DBXOR_Byte ... 142
ADM_DBXNOR_Byte .. 143

9.5 ADM API Clock Functions ... 144
ADM_StartTimer .. 144
ADM_CheckTimer .. 145

9.6 ADM API Backplane Functions ... 146
ADM_BtOpen ... 146
ADM_BtClose .. 147
ADM_BtNext .. 148
ADM_ReadBtCfg ... 149
ADM_BtFunc .. 150
ADM_SetStatus ... 151
ADM_SetBtStatus .. 152

9.7 ADM LED Functions .. 153
ADM_SetLed .. 153

9.8 ADM API Miscellaneous Functions ... 154
ADM_GetVersionInfo ... 154
ADM_SetConsolePort .. 155
ADM_SetConsoleSpeed .. 156

9.9 ADM API RAM Functions .. 157
ADM_RAM_GetString .. 157
ADM_RAM_GetInt ... 158
ADM_RAM_GetLong ... 159

Contents PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 8 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_RAM_GetFloat ... 160
ADM_RAM_GetDouble ... 161
ADM_RAM_GetChar ... 162
ADM_Get_BP_Data_Exchange .. 163

10 Backplane API Functions 165

10.1 Backplane API Initialization Functions .. 167
MVIbp_Open ... 167
MVIbp_Close ... 168

10.2 Backplane API Configuration Functions ... 169
MVIbp_GetIOConfig .. 169
MVIbp_SetIOConfig .. 171

10.3 Backplane API Synchronization Functions ... 173
MVIbp_WaitForInputScan ... 173
MVIbp_WaitForOutputScan .. 174

10.4 Backplane API Direct I/O Access ... 175
MVIbp_ReadOutputImage ... 175
MVIbp_WriteInputImage .. 176

10.5 Backplane API Messaging Functions ... 177
MVIbp_ReceiveMessage .. 177
MVIbp_SendMessage ... 179

10.6 Backplane API Miscellaneous Functions .. 181
MVIbp_GetVersionInfo .. 181
MVIbp_GetModuleInfo .. 182
MVIbp_ErrorString ... 183
MVIbp_SetUserLED .. 184
MVIbp_SetModuleStatus ... 185
MVIbp_GetConsoleMode .. 186
MVIbp_GetSetupMode .. 187
MVIbp_GetProcessorStatus .. 188
MVIbp_Sleep ... 189
MVIbp_SetConsoleMode .. 190

11 Serial Port Library Functions 191

11.1 Serial Port API Initialization Functions .. 193
MVIsp_Open.. 193
MVIsp_OpenAlt ... 195
MVIsp_Close ... 197

11.2 Serial Port API Configuration Functions ... 198
MVIsp_Config .. 198
MVIsp_SetHandshaking .. 199

11.3 Serial Port API Status Functions .. 200
MVIsp_SetRTS .. 200
MVIsp_GetRTS ... 201
MVIsp_SetDTR ... 202
MVIsp_GetDTR ... 203
MVIsp_GetCTS ... 204
MVIsp_GetDSR ... 205
MVIsp_GetDCD ... 206
MVIsp_GetLineStatus ... 207

11.4 Serial Port API Communications .. 208

PTQ-ADM ♦ 'C' Programmable Contents
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 9 of 239
February 20, 2013

MVIsp_Putch .. 208
MVIsp_Getch ... 209
MVIsp_Puts .. 210
MVIsp_PutData .. 212
MVIsp_Gets ... 214
MVIsp_GetData ... 216
MVIsp_GetCountUnsent .. 218
MVIsp_GetCountUnread ... 219
MVIsp_PurgeDataUnsent .. 220
MVIsp_PurgeDataUnread .. 221

11.5 Serial Port API Miscellaneous Functions .. 222
MVIsp_GetVersionInfo ... 222

12 Product Specifications 223

12.1 General Specifications .. 224
12.2 Hardware Specifications.. 225
12.3 Functional Specifications... 226

13 DOS 6 XL Reference Manual 227

14 Support, Service & Warranty 229

14.1 Contacting Technical Support ... 230
14.2 Warranty Information ... 231

Glossary of Terms 233

Index 237

Start Here PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 10 of 239 ProSoft Technology, Inc.
 February 20, 2013

PTQ-ADM ♦ 'C' Programmable Start Here
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 11 of 239
February 20, 2013

1 Start Here

In This Chapter

 Hardware and Software Requirements ... 12
 Information for Concept Version 2.6 Users.. 14

This guide is intended to guide you through the ProTalk module setup process,
from removing the module from the box to exchanging data with the processor. In
doing this, you will learn how to:

 Set up the processor environment for the PTQ module
 View how the PTQ module exchanges data with the processor
 Edit and download configuration files from your PC to the PTQ module
 Monitor the operation of the PTQ module

Start Here PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 12 of 239 ProSoft Technology, Inc.
 February 20, 2013

1.1 Hardware and Software Requirements

1.1.1 Package Contents

ProTalk Module Null Modem Serial Cable

1454-9F DB-9 Female to 9 Pos Screw Terminal
adapter (Serial protocol modules only)

ProSoft Solutions CD

Note: The DB-9 Female to 5 Pos Screw Terminal adapter is not required on Ethernet modules and
is therefore not included in the carton with these types of modules.

Quantum Hardware

This guide assumes that you are familiar with the installation and setup of the
Quantum hardware. The following should be installed, configured, and powered
up before proceeding:

 Quantum Processor
 Quantum rack
 Quantum power supply
 Quantum Modbus Plus Network Option Module (NOM Module) (optional)
 Quantum to PC programming hardware
 NOM Ethernet or Serial connection to PC

PTQ-ADM ♦ 'C' Programmable Start Here
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 13 of 239
February 20, 2013

PC and PC Software

 Windows-based PC with at least one COM port
 Quantum programming software installed on machine

or

 Concept™ PLC Programming Software version 2.6

or
ProWORX PLC Programming Software
or
Unity™ Pro PLC Programming Software

Note: ProTalk modules are compatible with common Quantum programming applications,
including Concept and Unity Pro. For all other programming applications, please contact technical
support.

1.1.2 Recommended Compact Flash (CF) Cards

What Compact Flash card does ProSoft recommend using?

Some ProSoft products contain a "Personality Module", or Compact Flash card.
ProSoft recommends using an industrial grade Compact Flash card for best
performance and durability. The following cards have been tested with ProSoft’s
modules, and are the only cards recommended for use. These cards can be
ordered through ProSoft, or can be purchased by the customer.

Approved ST-Micro cards:

 32M = SMC032AFC6E
 64M = SMC064AFF6E
 128M = SMC128AFF6E

Approved Silicon Systems cards:

 256M = SSD-C25MI-3012
 512M = SSD-C51MI-3012
 2G = SSD-C02GI-3012
 4G = SSD-C04GI-3012

Start Here PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 14 of 239 ProSoft Technology, Inc.
 February 20, 2013

1.2 Information for Concept Version 2.6 Users

This guide uses Concept PLC Programming Software version 2.6 to configure
the Quantum PLC. The ProTalk installation CD includes MDC module
configuration files that help document the PTQ installation. Although not required,
these files should be installed before proceeding to the next section.

1.2.1 Installing MDC Configuration Files

1 From a PC with Concept 2.6 installed, choose START / PROGRAMS / CONCEPT

/ MODCONNECT TOOL.

This action opens the Concept Module Installation dialog box.

2 Choose FILE / OPEN INSTALLATION FILE.

This action opens the Open Installation File dialog box:

3 If you are using a Quantum processor, you will need the MDC files. In the
Open Installation File dialog box, navigate to the MDC Files directory on the
ProTalk CD.

4 Choose the MDC file and help file for your version of Concept:

o Concept 2.6 users: select PTQ_2_60.mdc and PTQMDC.hlp
o Concept 2.5 users: select PTQ_2_50.mdc and PTQMDC.hlp.

PTQ-ADM ♦ 'C' Programmable Start Here
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 15 of 239
February 20, 2013

Select the files that go with the Concept version you are using, and then click
OK. This action opens the Add New Modules dialog box.

5 Click the ADD ALL button. A series of message boxes may appear during this
process. Click YES or OK for each message that appears.

6 When the process is complete, open the FILE menu and choose EXIT to save
your changes.

Start Here PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 16 of 239 ProSoft Technology, Inc.
 February 20, 2013

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with Concept
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 17 of 239
February 20, 2013

2 Configuring the Processor with Concept

In This Chapter

 Create a New Project .. 18
 Add the PTQ Module to the Project ... 20
 Set up Data Memory in Project .. 22
 Download the Project to the Processor ... 24
 Verify Successful Download .. 27

The following steps are designed to ensure that the processor is able to transfer
data successfully with the PTQ module. As part of this procedure, you will use
Concept configuration software from Schneider Electric to create a project, add
the PTQ module to the project, set up data memory for the project, and then
download the project to the processor.

Important Note: Concept software does not report whether the PTQ module is present in the rack,
and therefore is not able to report the health status of the module when the module is online with
the Quantum processor. Please consider this when monitoring the status of the PTQ module.

Configuring the Processor with Concept PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 18 of 239 ProSoft Technology, Inc.
 February 20, 2013

2.1 Create a New Project

This phase of the setup procedure must be performed on a computer that has
the Concept configuration software installed.

1 From your computer, choose START / PROGRAMS / CONCEPT V2.6 XL.EN /
CONCEPT. This action opens the Concept window.

2 Open the File menu, and then choose NEW PROJECT. This action opens the
PLC Configuration dialog box.

3 In the list of options on the left side of this dialog box, double-click the PLC

SELECTION folder. This action opens the PLC Selection dialog box.

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with Concept
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 19 of 239
February 20, 2013

4 In the CPU/Executive pane, use the scroll bar to locate and select the PLC to
configure.

5 Click OK. This action opens the PLC Configuration dialog box, populated with
the correct values for the PLC you selected.

6 Make a note of the holding registers for the module. You will need this
information when you modify your application. The Holding Registers are
displayed in the PLC Memory Partition pane of the PLC Configuration dialog
box.

Configuring the Processor with Concept PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 20 of 239 ProSoft Technology, Inc.
 February 20, 2013

2.2 Add the PTQ Module to the Project

1 In the list of options on the left side of the PLC Configuration dialog box,
double-click I/O MAP. This action opens the I/O Map dialog box.

2 Click the EDIT button to open the Local Quantum Drop dialog box. This dialog
box is where you identify rack and slot locations.

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with Concept
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 21 of 239
February 20, 2013

3 Click the MODULE button next to the rack/slot position where the ProTalk
module will be installed. This action opens the I/O Module Selection dialog
box.

4 In the Modules pane, use the scroll bar to locate and select the ProTalk
module, and then click OK. This action copies the description of the ProTalk
module next to the assigned rack and slot number of the Local Quantum
Drop dialog box.

Configuring the Processor with Concept PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 22 of 239 ProSoft Technology, Inc.
 February 20, 2013

5 Repeat steps 3 through 5 for each ProTalk module you plan to install. When
you have finished installing your ProTalk modules, click OK to save your
settings. Click YES to confirm your settings.

Tip: Select a module, and then click the Help on Module button for help pages.

2.3 Set up Data Memory in Project

1 In the list of options on the left side of the PLC Configuration dialog box,
double-click SPECIALS.

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with Concept
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 23 of 239
February 20, 2013

2 This action opens the SPECIALS dialog box.

Selecting the Time of Day

1 Select (check) the Time of Day box, and then enter the value 00001 as
shown in the following illustration. This value sets the first time of day register
to 400001.

2 Click OK to save your settings and close the Specials dialog box.

Configuring the Processor with Concept PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 24 of 239 ProSoft Technology, Inc.
 February 20, 2013

Saving your project

1 In the PLC Configuration dialog box, choose FILE / SAVE PROJECT AS.

2 This action opens the Save Project As dialog box.

3 Name the project, and then click OK to save the project to a file.

2.4 Download the Project to the Processor

Next, download (copy) the project file to the Quantum Processor.

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with Concept
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 25 of 239
February 20, 2013

1 Use the null modem cable to connect your PC’s serial port to the Quantum
processor, as shown in the following illustration.

Note: You can use a Modbus Plus Network Option Module (NOM Module) module in place of the
serial port if necessary.

2 Open the PLC menu, and then choose CONNECT.
3 In the PLC Configuration dialog box, open the ONLINE menu, and then

choose CONNECT. This action opens the Connect to PLC dialog box.

4 Leave the default settings as shown and click OK.

Note: Click OK to dismiss any message boxes that appear during the connection process.

Configuring the Processor with Concept PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 26 of 239 ProSoft Technology, Inc.
 February 20, 2013

5 In the PLC Configuration window, open the ONLINE menu, and then choose
DOWNLOAD. This action opens the Download Controller dialog box.

6 Click ALL, and then click DOWNLOAD. If a message box appears indicating
that the controller is running, click YES to shut down the controller. The
Download Controller dialog box displays the status of the download as shown
in the following illustration.

7 When the download is complete, you will be prompted to restart the
controller. Click YES to restart the controller.

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with Concept
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 27 of 239
February 20, 2013

2.5 Verify Successful Download

The final step is to verify that the configuration changes you made were received
successfully by the module, and to make some adjustments to your settings.

1 In the PLC Configuration window, open the ONLINE menu, and then choose
ONLINE CONTROL PANEL. This action opens the Online Control Panel dialog
box.

2 Click the SET CLOCK button to open the Set Controller’s Time of Day Clock
dialog box.

3 Click the WRITE PANEL button. This action updates the date and time fields in
this dialog box. Click OK to close this dialog box and return to the previous
window.

4 Click CLOSE to close the Online Control Panel dialog box.
5 In the PLC Configuration window, open the ONLINE menu, and then choose

REFERENCE DATA EDITOR. This action opens the Reference Data Editor
dialog box. On this dialog box, you will add preset values to data registers
that will later be monitored in the ProTalk module.

Configuring the Processor with Concept PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 28 of 239 ProSoft Technology, Inc.
 February 20, 2013

6 Place the cursor over the first address field, as shown in the following
illustration.

7 In the PLC Configuration window, open the TEMPLATES menu, and then
choose INSERT ADDRESSES. This action opens the Insert addresses dialog
box.

8 On the Insert Addresses dialog box, enter the values shown in the following
illustration, and then click OK.

9 Notice that the template populates the address range, as shown in the
following illustration. Place your cursor as shown in the first blank address
field below the addresses you just entered.

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with Concept
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 29 of 239
February 20, 2013

10 Repeat steps 6 through 9, using the values in the following illustration:

11 In the PLC Configuration window, open the ONLINE menu, and then choose
ANIMATE. This action opens the RDE Template dialog box, with animated
values in the Value field.

12 Verify that values shown are cycling, starting from address 400065 and up.
13 In the PLC Configuration window, open the TEMPLATES menu, and then

choose SAVE TEMPLATE AS. Name the template ptqclock, and then click OK

to save the template.
14 In the PLC Configuration window, open the ONLINE menu, and then choose

DISCONNECT. At the disconnect message, click YES to confirm your choice.

At this point, you have successfully

 Created and downloaded a Quantum project to the PLC
 Preset values in data registers that will later be monitored in the ProTalk

module.

You are now ready to complete the installation and setup of the ProTalk module.

Configuring the Processor with Concept PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 30 of 239 ProSoft Technology, Inc.
 February 20, 2013

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with ProWORX
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 31 of 239
February 20, 2013

3 Configuring the Processor with ProWORX

When you use ProWORX 32 software to configure the processor, use the
example SAF file provided on the ProTalk Solutions CD-ROM.

Important Note: ProWORX software does not report whether the PTQ module is present in the
rack, and therefore is not able to report the health status of the module when the module is online
with the Quantum processor. Please consider this when monitoring the status of the PTQ module.

1 Run the SCHNEIDER_ALLIANCES.EXE application that is installed with the
ProWORX 32 software:

2 Click on IMPORT…

Configuring the Processor with ProWORX PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 32 of 239 ProSoft Technology, Inc.
 February 20, 2013

3 Select the .SAF File that is located on the CD-ROM shipped with the PTQ
module.

4 After you click on OPEN you should see the PTQ modules imported (select
I/O SERIES as QUANTUM):

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with ProWORX
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 33 of 239
February 20, 2013

Now you can close the Schneider alliances application and run the ProWORX 32
software. At the Traffic Cop section, select the PTQ module to be inserted at the
slot:

Configuring the Processor with ProWORX PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 34 of 239 ProSoft Technology, Inc.
 February 20, 2013

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with Unity Pro
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 35 of 239
February 20, 2013

4 Configuring the Processor with Unity Pro

In This Chapter

 Create a New Project .. 36
 Add the PTQ Module to the Project ... 38
 Build the Project .. 40
 Connect Your PC to the Processor ... 41
 Download the Project to the Quantum Processor 44

The following steps are designed to ensure that the processor (Quantum or
Unity) is able to transfer data successfully with the PTQ module. As part of this
procedure, you will use Unity Pro to create a project, add the PTQ module to the
project, set up data memory for the project, and then download the project to the
processor.

Configuring the Processor with Unity Pro PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 36 of 239 ProSoft Technology, Inc.
 February 20, 2013

4.1 Create a New Project

The first step is to open Unity Pro and create a new project.

1 In the New Project dialog box, choose the CPU type. In the following
illustration, the CPU is 140 CPU 651 60. Choose the processor type that
matches your own hardware configuration, if it differs from the example. Click
OK to continue.

2 Next, add a power supply to the project. In the Project Browser, expand the
Configuration folder, and then double-click the 1:LOCALBUS icon. This action
opens a graphical window showing the arrangement of devices in your
Quantum rack.

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with Unity Pro
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 37 of 239
February 20, 2013

3 Select the rack position for the power supply, and then click the right mouse
button to open a shortcut menu. On the shortcut menu, choose NEW DEVICE.

4 Expand the Supply folder, and then select your power supply from the list.
Click OK to continue.

5 Repeat these steps to add any additional devices to your Quantum Rack.

Configuring the Processor with Unity Pro PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 38 of 239 ProSoft Technology, Inc.
 February 20, 2013

4.2 Add the PTQ Module to the Project

1 Expand the Communication tree, and select GEN NOM. This module type
provides extended communication capabilities for the Quantum system, and
allows communication between the PLC and the PTQ module without
requiring additional programming.

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with Unity Pro
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 39 of 239
February 20, 2013

2 Next, enter the module personality value. The correct value for ProTalk
modules is 1060 decimal (0424 hex).

3 Before you can save the project in Unity Pro, you must validate the
modifications. Open the EDIT menu, and then choose VALIDATE. If no errors
are reported, you can save the project.

4 SAVE the project.

Configuring the Processor with Unity Pro PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 40 of 239 ProSoft Technology, Inc.
 February 20, 2013

4.3 Build the Project

Whenever you update the configuration of your PTQ module or the processor,
you must import the changed configuration from the module, and then build
(compile) the project before downloading it to the processor.

Note: The following steps show you how to build the project in Unity Pro. This is not intended to
provide detailed information on using Unity Pro, or debugging your programs. Refer to the
documentation for your processor and for Unity Pro for specialized information.

To build (compile) the project:

1 Review the elements of the project in the Project Browser.
2 When you are satisfied that you are ready to download the project, open the

BUILD menu, and then choose REBUILD ALL PROJECT. This action builds
(compiles) the project into a form that the processor can use to execute the
instructions in the project file. This task may take several minutes, depending
on the complexity of the project and the resources available on your PC.

3 As the project is built, Unity Pro reports its process in a Progress dialog box,
with details appearing in a pane at the bottom of the window. The following
illustration shows the build process under way.

After the build process is completed successfully, the next step is to download
the compiled project to the processor.

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with Unity Pro
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 41 of 239
February 20, 2013

4.4 Connect Your PC to the Processor

The next step is to connect to the processor so that you can download the project
file. The processor uses this project file to communicate over the backplane to
modules identified in the project file.

Note: If you have never connected from the PC to your processor before, you must verify that the
necessary port drivers are installed and available to Unity Pro.

To verify address and driver settings in Unity Pro:

1 Open the PLC menu, and choose STANDARD MODE. This action turns off the
PLC Simulator, and allows you to communicate directly with the Quantum or
Unity hardware.

2 Open the PLC menu, and choose SET ADDRESS... This action opens the Set
Address dialog box. Open the MEDIA dropdown list and choose the
connection type to use (TCPIP or USB).

Configuring the Processor with Unity Pro PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 42 of 239 ProSoft Technology, Inc.
 February 20, 2013

3 If the MEDIA dropdown list does not contain the connection method you wish
to use, click the COMMUNICATION PARAMETERS button in the PLC area of the
dialog box. This action opens the PLC Communication Parameters dialog
box.

4 Click the DRIVER SETTINGS button to open the SCHNEIDER Drivers
management Properties dialog box.

5 Click the INSTALL/UPDATE button to specify the location of the Setup.exe file
containing the drivers to use. You will need your Unity Pro installation disks
for this step.

6 Click the BROWSE button to locate the Setup.exe file to execute, and then
execute the setup program. After the installation, restart your PC if you are
prompted to do so. Refer to your Schneider Electric documentation for more
information on installing drivers for Unity Pro.

PTQ-ADM ♦ 'C' Programmable Configuring the Processor with Unity Pro
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 43 of 239
February 20, 2013

4.4.1 Connecting to the Processor with TCPIP

The next step is to download (copy) the project file to the processor. The
following steps demonstrate how to use an Ethernet cable connected from the
Processor to your PC through an Ethernet hub or switch. Other connection
methods may also be available, depending on the hardware configuration of your
processor, and the communication drivers installed in Unity Pro.

1 If you have not already done so, connect your PC and the processor to an
Ethernet hub.

2 Open the PLC menu, and then choose SET ADDRESS.

 Important: Notice that the Set Address dialog box is divided into two areas. Enter the address
and media type in the PLC area of the dialog box, not the SIMULATOR area.

3 Enter the IP address in the address field. In the MEDIA dropdown list, choose
TCPIP.

4 Click the TEST CONNECTION button to verify that your settings are correct.

Configuring the Processor with Unity Pro PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 44 of 239 ProSoft Technology, Inc.
 February 20, 2013

4.5 Download the Project to the Quantum Processor

1 Open the PLC menu and then choose CONNECT. This action opens a
connection between the Unity Pro software and the processor, using the
address and media type settings you configured in the previous step.

2 On the PLC menu, choose TRANSFER PROJECT TO PLC. This action opens
the TRANSFER PROJECT TO PLC dialog box. If you would like the PLC to go to
"Run" mode immediately after the transfer is complete, select (check) the
PLC RUN AFTER TRANSFER check box.

3 Click the TRANSFER button to download the project to the processor. As the
project is transferred, Unity Pro reports its process in a PROGRESS dialog box,
with details appearing in a pane at the bottom of the window.

When the transfer is complete, place the processor in Run mode. The processor
will start scanning your process logic application.

PTQ-ADM ♦ 'C' Programmable Setting Up the ProTalk Module
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 45 of 239
February 20, 2013

5 Setting Up the ProTalk Module

In This Chapter

 Install the ProTalk Module in the Quantum Rack 46

After you complete the following procedures, the ProTalk module will actively be
transferring data bi-directionally with the processor.

Setting Up the ProTalk Module PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 46 of 239 ProSoft Technology, Inc.
 February 20, 2013

5.1 Install the ProTalk Module in the Quantum Rack

5.1.1 Verify Jumper Settings

ProTalk modules are configured for RS-232 serial communications by default. To
use RS-422 or RS-485, you must change the jumpers.

The jumpers are located on the back of the module as shown in the following
illustration:

5.1.2 Inserting the 1454-9F connector

Insert the 1454-9F connector as shown. Wiring locations are shown in the table:

PTQ-ADM ♦ 'C' Programmable Setting Up the ProTalk Module
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 47 of 239
February 20, 2013

5.1.3 Install the ProTalk Module in the Quantum Rack

1 Place the Module in the Quantum Rack. The ProTalk module must be placed
in the same rack as the processor.

2 Tilt the module at a 45 angle and align the pegs at the top of the module with
slots on the backplane.

3 Push the module into place until it seats firmly in the backplane.

Caution: The PTQ module is hot-swappable, meaning that you can install and remove it while the
rack is powered up. You should not assume that this is the case for all types of modules unless the
user manual for the product explicitly states that the module is hot-swappable. Failure to observe
this precaution could result in damage to the module and any equipment connected to it.

Setting Up the ProTalk Module PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 48 of 239 ProSoft Technology, Inc.
 February 20, 2013

5.1.4 Cable Connections

The application ports on the PTQ-ADM module support RS-232, RS-422, and
RS-485 interfaces. Please inspect the module to ensure that the jumpers are set
correctly to correspond with the type of interface you are using.

Note: When using RS-232 with radio modem applications, some radios or modems require
hardware handshaking (control and monitoring of modem signal lines). Enable this in the
configuration of the module by setting the UseCTS parameter to 1.

RS-232 Configuration/Debug Port

This port is physically a DB-9 connection. This port permits a PC based terminal
emulation program to view configuration and status data in the module and to
control the module. The cable for communications on this port is shown in the
following diagram:

The Ethernet port on this module (if present) is inactive.

RS-232 Application Port(s)

When the RS-232 interface is selected, the use of hardware handshaking
(control and monitoring of modem signal lines) is user definable. If no hardware
handshaking will be used, the cable to connect to the port is as shown below:

PTQ-ADM ♦ 'C' Programmable Setting Up the ProTalk Module
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 49 of 239
February 20, 2013

RS-232: Modem Connection

This type of connection is required between the module and a modem or other
communication device.

The "Use CTS Line" parameter for the port configuration should be set to 'Y' for
most modem applications.

RS-232: Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module
requires hardware handshaking (control and monitoring of modem signal lines).

Setting Up the ProTalk Module PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 50 of 239 ProSoft Technology, Inc.
 February 20, 2013

RS-232: Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field
device communication port.

Note: If the port is configured with the "Use CTS Line" set to 'Y', then a jumper is required between
the RTS and the CTS line on the module connection.

RS-485 Application Port(s)

The RS-485 interface requires a single two or three wire cable. The Common
connection is optional and dependent on the RS-485 network. The cable required
for this interface is shown below:

Note: Terminating resistors are generally not required on the RS-485 network, unless you are
experiencing communication problems that can be attributed to signal echoes or reflections. In
these cases, installing a 120-ohm terminating resistor between pins 1 and 8 on the module
connector end of the RS-485 line may improve communication quality.

PTQ-ADM ♦ 'C' Programmable Setting Up the ProTalk Module
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 51 of 239
February 20, 2013

RS-422

RS-485 and RS-422 Tip

If communication in the RS-422/RS-485 mode does not work at first, despite all
attempts, try switching termination polarities. Some manufacturers interpret +/-
and A/B polarities differently.

Setting Up the ProTalk Module PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 52 of 239 ProSoft Technology, Inc.
 February 20, 2013

PTQ-ADM ♦ 'C' Programmable Introduction to PTQ-ADM
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 53 of 239
February 20, 2013

6 Introduction to PTQ-ADM

In This Chapter

 Operating System .. 54

This document provides information needed for the development of application
programs for the PTQ-ADM Serial Communication Module. The PTQ suite of
modules is designed to allow devices with a serial port to be accessed by a
Quantum PLC. The ProTalk module is the platform used.

ProTalk modules are programmable to accommodate devices with unique serial
protocols. Included in this document is information about the available software
API libraries and tools, module configuration and programming information, and
example code for the module. For the Quantum PLC, refer to ProTalk Setup
Guide Phase 1 and 2 for more information. This document assumes the reader is
familiar with software development in the 16-bit DOS environment using the 'C'
programming language. This document also assumes that the reader is familiar
with Quantum PLC platform.

Introduction to PTQ-ADM PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 54 of 239 ProSoft Technology, Inc.
 February 20, 2013

6.1 Operating System

The PTQ module includes General Software Embedded DOS 6-XL. This
operating system provides DOS compatibility along with real-time multi-tasking
functionality. The operating system is stored in Flash ROM and is loaded by the
BIOS when the module boots.

DOS compatibility allows user applications to be developed using standard DOS
tools, such as Digital Mars C++ and Borland compilers. User programs may be
executed automatically by loading them from either the CONFIG.SYS file or an
AUTOEXEC.BAT file.

Note: DOS programs that try to access the video or keyboard hardware directly will not function
correctly on the PTQ module. Only programs that use the standard DOS and BIOS functions to
perform console I/O are compatible.

Refer to the General Software Embedded DOS 6-XL Developer’s Guide
(page 227) on the PTQ-ADM CD-ROM for more information.

PTQ-ADM ♦ 'C' Programmable Understanding the PTQ-ADM API
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 55 of 239
February 20, 2013

7 Understanding the PTQ-ADM API

In This Chapter

 API Libraries .. 56
 Development Tools ... 57
 Theory of Operation .. 58
 Database ... 60
 RS-485 Programming Note ... 61

The PTQ-ADM API Suite allows software developers to access the PLC
backplane and serial ports without needing detailed knowledge of the module’s
hardware design. The PTQ-ADM API Suite consists of three distinct components:
the Serial Port API, the Backplane/CIP API and the ADM API. The Backplane
API provides access to the PLC, the Serial Port API provides access to the serial
ports and the ADM API provides functions designed to ease development.

Applications for the PTQ-ADM module may be developed using industry-
standard DOS programming tools and the appropriate API components.

This section provides general information pertaining to application development
for the PTQ-ADM module.

Understanding the PTQ-ADM API PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 56 of 239 ProSoft Technology, Inc.
 February 20, 2013

7.1 API Libraries

Each API provides a library of function calls. The library supports any
programming language that is compatible with the Pascal calling convention.

Each API library is a static object code library that must be linked with the
application to create the executable program. It is distributed as a 16-bit large
model OMF library, compatible with Digital Mars or Borland development tools.

Note: The following compiler versions are intended to be compatible with the PTQ module API:
Digital Mars C++ 8.49
Borland C++ V5.02
More compilers will be added to the list as the API is tested for compatibility with them.

7.1.1 Calling Convention

The API library functions are specified using the 'C' programming language
syntax. To allow applications to be developed in other industry-standard
programming languages, the standard Pascal calling convention is used for all
application interface functions.

7.1.2 Header File

A header file is provided along with each library. This header file contains API
function declarations, data structure definitions, and miscellaneous constant
definitions. The header file is in standard 'C' format.

7.1.3 Multithreading Considerations

The DOS 6-XL operating system supports the development of multi-threaded
applications.

Note: The multi-threading library kernel.lib in the DOS folder on the distribution CD-ROM is
compiler-specific to Borland C++ 5.02. It is not compatible with Digital Mars C++ 8.49. ProSoft
Technology, Inc. does not support multi-threading with Digital Mars C++ 8.49.

Note: The ADM DOS 6-XL operating system has a system tick of 5 milliseconds. Therefore, thread
scheduling and timer servicing occur at 5ms intervals. Refer to the DOS 6-XL Developer’s Guide
on the distribution CD-ROM for more information.

Multi-threading is also supported by the API.

 DOS and cipapi libraries have been tested and are thread-safe for use in
multi-threaded applications.

 MVIbp and MVIsp libraries are safe to use in multi-threaded applications with
the following precautions: If you call the same MVIbp or MVIsp function from
multiple threads, you will need to protect it, to prevent task switches during
the function's execution. The same is true for different MVIbp or MVIsp
functions that share the same resources (for example, two different functions
that access the same read or write buffer).

PTQ-ADM ♦ 'C' Programmable Understanding the PTQ-ADM API
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 57 of 239
February 20, 2013

WARNING: ADM and ADMNET libraries are not thread-safe. ProSoft Technology, Inc. does not
support the use of ADM and ADMNET libraries in multi-threaded applications.

7.2 Development Tools

An application that is developed for the PTQ-ADM module must be stored on the
module’s Flash ROM disk to be executed. Tools are provided with the API to
build the disk image and download it to the module via the programming port
PRT1.

Understanding the PTQ-ADM API PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 58 of 239 ProSoft Technology, Inc.
 February 20, 2013

7.3 Theory of Operation

7.3.1 ADM API

The ADM API is one component of the PTQ-ADM API Suite. The ADM API
provides a simple module level interface for the ProLinx, MVI and PTQ Families.
This is useful when developing an application that implements a serial protocol
for a particular device, such as a scale or bar code reader. After the application
has been developed, it can be used on any of the PTQ family modules.

7.3.2 ADM API Architecture

The ADM API is composed of a statically-linked library (called the ADM library).
Applications using the ADM API must be linked with the ADM library. The ADM
API encapsulates the hardware, making it possible to design PTQ applications
that can be run on any of the PTQ family of modules.

The following illustration shows the ADM API architecture:

7.3.3 PTQ Big I/O Backplane Model Theory of Operation

When the PLC has data to write to the PTQ module it will write to the backplane
and pass the lock to the PTQ module. The module program must call
MVIbp_ReadOutputImage to see if data is available for reading. If data is
available the function will return MVI_SUCCESS. If not, it will return
MVI_TIMEOUT. The call to MVIbp_ReadOutputImage should be called often
until MVI_SUCCESS is returned. As soon as MVI_SUCCESS is returned, action
should be taken on the data. Once this is completed, a call to
MVIbp_WriteInputImage should be made.

PTQ-ADM ♦ 'C' Programmable Understanding the PTQ-ADM API
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 59 of 239
February 20, 2013

The lock is not returned to the PLC until the call to MVIbp_WriteInputImage is
made. The program time between a successful MVIbp_ReadOutputImage and
the call to MVIbp_WriteInputImage is added to the PLC scan time. It is
recommended to keep this time to a minimum to avoid unduly lengthening the
PLC scan time.

PLC Writes Output
Image

This time is added
to the PLC Scan

MVIbp_ReadOutputImag
e

 If SUCCESS then:

Copy data to buffer and
go to

MVIbp_WriteInputImage
This time is added
to the PLC Scan

Total PLC
Scan Time

 MVIbp_WriteInputImage

PLC program logic
executes during
this time

Other processing
must occur during
this time in order
to not lengthen the
PLC scan time

PLC Writes Output
Image

Understanding the PTQ-ADM API PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 60 of 239 ProSoft Technology, Inc.
 February 20, 2013

7.4 Database

The database functions of the ADM API allow the creation of a database in
memory to store data to be accessed via the backplane interface and the
application ports. The database consists of word registers that can be accessed
as bits, bytes, words, longs, floats or doubles. Functions are provided for reading
and writing the data in the various data types. The database serves as a holding
area for exchanging data with the processor on the backplane, and with a foreign
device attached to the application port. Data transferred into the module from the
processor can be requested via the serial port. Conversely data written into the
module database by the foreign device can be transferred to the processor over
the backplane.

PTQ-ADM ♦ 'C' Programmable Understanding the PTQ-ADM API
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 61 of 239
February 20, 2013

7.5 RS-485 Programming Note

7.5.1 Hardware

The serial port has two driver chips, one for RS-232 and one for RS-422/485.
The Request To Send (RTS) line is used for hardware handshaking in RS-232
and to control the transmitter in RS-422/485.

In RS-485, only one node can transmit at a time. All nodes should default to
listening (RTS off) unless transmitting. If a node has its RTS line asserted, then
all other communication is blocked. An analogy for this is a 2-way radio system
where only one person can speak at a time. If someone holds the talk button,
then they cannot hear others transmitting.

In order to have orderly communication, a node must make sure no other nodes
are transmitting before beginning a transmission. The node needing to transmit
will assert the RTS line then transmit the message. The RTS line must be de-
asserted as soon as the last character is transmitted. Turning RTS on late or off
early will cause the beginning or end of the message to be clipped resulting in a
communication error. In some applications it may be necessary to delay between
RTS transitions and the message. In this case RTS would be asserted, wait for
delay time, transmit message, wait for delay time, and de-assert RTS.

Understanding the PTQ-ADM API PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 62 of 239 ProSoft Technology, Inc.
 February 20, 2013

7.5.2 Software

The following is a code sample designed to illustrate the steps required to
transmit in RS-485. Depending on the application, it may be necessary to handle
other processes during this transmit sequence and to not block. This is simplified
to demonstrate the steps required.

int length = 10; // send 10 characters

int CharsLeft;

BYTE buffer[10];

// Set RTS on

MVIsp_SetRTS(COM2, ON);

// Optional delay here (depends on application)

// Transmit message

MVIsp_PutData(COM2, buffer, &length, TIMEOUT_ASAP);

// Check to see that message is done

MVIsp_GetCountUnsent(COM2, &CharsLeft);

// Keep checking until all characters sent

while(CharsLeft)

{

MVIsp_GetCountUnsent(COM2, &CharsLeft);

}

// Optional delay here (depends on application)

// Set RTS off

MVIsp_SetRTS(COM2, OFF);

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 63 of 239
February 20, 2013

8 Setting Up Your Development Environment

In This Chapter

 Setting Up Your Compiler .. 64
 Creating a ROM Disk Image .. 82
 Downloading a ROM Disk Image .. 84
 PTQ System BIOS Setup .. 85
 Transferring Files to and from the Module with HyperTerminal 87
 Debugging Strategies .. 95

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 64 of 239 ProSoft Technology, Inc.
 February 20, 2013

8.1 Setting Up Your Compiler

There are some important compiler settings that must be set in order to
successfully compile an application for the PTQ platforms. The following topics
describe the setup procedures for each of the supported compilers.

8.1.1 Configuring Digital Mars C++ 8.49

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology using Digital Mars C++ 8.49. After verifying that
the sample code can be successfully compiled and built, you can modify the
sample code to work with your application.

Note: This procedure assumes that you have successfully installed Digital Mars C++ 8.49 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_PTQ.ZIP file. This zip file
is available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. When you unzip the file, you will find the
sample code files in \ADM_TOOL_PTQ\SAMPLES\.

Important: The sample code and libraries in the 1756-MVI-Samples folder are not compatible with,
and are not supported for, the Digital Mars compiler.

Building an Existing Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project Open from the Main
Menu.

2 From the Folders field, navigate to the folder that contains the project
(C:\ADM_TOOL_PTQ\SAMPLES\…).

3 In the File Name field, click on the project name (56adm-si.prj).

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 65 of 239
February 20, 2013

4 Click OK. The Project window appears:

5 Click Project Rebuild All from the Main Menu to create the .exe file. The
status of the build will appear in the Output window:

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 66 of 239 ProSoft Technology, Inc.
 February 20, 2013

6 The executable file will be located in the directory listed in the Compiler
Output Directory field. If it is blank then the executable file will be located in
the same folder as the project file. The Project Settings window can be

accessed by clicking Project Settings from the Main Menu.

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 67 of 239
February 20, 2013

Creating a New Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project New from the Main
Menu.

2 Select the path and type in the Project Name.
3 Click Next.

4 In the Platform field, choose DOS.
5 In the Project Settings choose Release if you do not want debug information

included in your build.

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 68 of 239 ProSoft Technology, Inc.
 February 20, 2013

6 Click Next.

7 Select the first source file necessary for the project.
8 Click Add.
9 Repeat this step for all source files needed for the project.
10 Repeat the same procedure for all library files (.lib) needed for the project.
11 Choose Libraries (*.lib) from the List Files of Type field to view all library files:

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 69 of 239
February 20, 2013

12 Click Next.

13 Add any defines or include directories desired.
14 Click Finish.
15 The Project window should now contain all the necessary source and library

files as shown in the following window:

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 70 of 239 ProSoft Technology, Inc.
 February 20, 2013

16 Click Project Settings from the Main Menu.

17 These settings were set when the project was created. No changes are
required. The executable must be built as a DOS executable in order to run
on the PTQ platform.

18 Click the Directories tab and fill in directory information as required by your
project’s directory structure.

19 If the fields are left blank then it is assumed that all of the files are in the
same directory as the project file. The output files will be placed in this
directory as well.

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 71 of 239
February 20, 2013

20 Click on the Build tab, and choose the Compiler selection. Confirm that the
settings match those shown in the following screen:

21 Click Code Generation from the Topics field and ensure that the options
match those shown in the following screen:

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 72 of 239 ProSoft Technology, Inc.
 February 20, 2013

22 Click Memory Models from the Topics field and ensure that the options
match those shown in the following screen:

23 Click Linker from the Topics field and ensure that the options match those
shown in the following screen:

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 73 of 239
February 20, 2013

24 Click Packing & Map File from the Topics field and ensure that the options
match those shown in the following screen:

25 Click Make from the Topics field and ensure that the options match those
shown in the following screen:

26 Click OK.

27 Click Parse Update All from the Project Window Menu. The new settings
may not take effect unless the project is updated and reparsed.

28 Click Project Build All from the Main Menu.

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 74 of 239 ProSoft Technology, Inc.
 February 20, 2013

29 When complete, the build results will appear in the Output window:

The executable file will be located in the directory listed in the Compiler Output
Directory box of the Directories tab (that is, C:\ADM_TOOL_PTQ\SAMPLES\…).

The Project Settings window can be accessed by clicking Project Settings
from the Main Menu.

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

8.1.2 Configuring Borland C++5.02

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology. using Borland C++ 5.02. After verifying that the
sample code can be successfully compiled and built, you can modify the sample
code to work with your application.

Note: This procedure assumes that you have successfully installed Borland C++ 5.02 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_PTQ.ZIP file. This zip file
is available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. One the file is unzipped, you can find the
sample code files in \ADM_TOOL_PTQ\Samples\

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 75 of 239
February 20, 2013

Building an Existing Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, then click Project Open Project from the Main
Menu.

2 From the Directories field, navigate to the directory that contains the project
(C:\adm\sample).

3 In the File Name field, click on the project name (adm.ide).
4 Click OK. The Project window appears:

5 Click Project Build All from the Main Menu to create the .exe file. The
Building ADM window appears when complete:

6 When Success appears in the Status field, click OK.

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 76 of 239 ProSoft Technology, Inc.
 February 20, 2013

The executable file will be located in the directory listed in the Final field of
the Output Directories (that is, C:\adm\sample). The Project Options window
can be accessed by clicking Options Project Menu from the Main Menu.

Creating a New Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, then click File Project from the Main Menu.

2 Type in the Project Path and Name. The Target Name is created
automatically.

3 In the Target Type field, choose Application (.exe).
4 In the Platform field, choose DOS (Standard).
5 In the Target Model field, choose Large.
6 Ensure that Emulation is checked in the Math Support field.

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 77 of 239
February 20, 2013

7 Click OK. A Project window appears:

8 Click on the .cpp file created and press the Delete key. Click Yes to delete
the .cpp file.

9 Right click on the .exe file listed in the Project window and choose the Add
Node menu selection. The following window appears:

10 Click source file, then click Open to add source file to the project. Repeat this
step for all source files needed for the project.

11 Repeat the same procedure for all library files (.lib) needed for the project.

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 78 of 239 ProSoft Technology, Inc.
 February 20, 2013

12 Choose Libraries (*.lib) from the Files of Type field to view all library files:

13 The Project window should now contain all the necessary source and library
files as shown in the following window:

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 79 of 239
February 20, 2013

14 Click Options Project from the Main Menu.

15 Click Directories from the Topics field and fill in directory information as
required by your project’s directory structure.

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 80 of 239 ProSoft Technology, Inc.
 February 20, 2013

16 Double-click on the Compiler header in the Topics field, and choose the
Processor selection. Confirm that the settings match those shown in the
following screen:

17 Click Memory Model from the Topics field and ensure that the options match
those shown in the following screen:

18 Click OK.

19 Click Project Build All from the Main Menu.

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 81 of 239
February 20, 2013

20 When complete, the Success window appears:

21 Click OK. The executable file will be located in the directory listed in the Final
box of the Output Directories (that is, C:\adm\sample). The Project Options

window can be accessed by clicking Options Project from the Main Menu.

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 82 of 239 ProSoft Technology, Inc.
 February 20, 2013

8.2 Creating a ROM Disk Image

To change the contents of the ROM disk, a new disk image must be created
using the WINIMAGE utility.

The WINIMAGE utility for creating disk images is described in the following
topics.

8.2.1 WINIMAGE - Windows Disk Image Builder

WINIMAGE is a Win9x/NT utility that may be used to create disk images for
downloading to the PTQ module. It does not require the use of a floppy diskette.
Also, it is not necessary to estimate the disk image size, since WINIMAGE does
this automatically and can truncate the unused portion of the disk. In addition,
WINIMAGE will de-fragment a disk image so that files may be deleted and added
to the image without resulting in wasted space.

To install WINIMAGE, unzip the winima40.zip file in a subdirectory on your PC
running Win9x or NT 4.0. To start WINIMAGE, run WINIMAGE.EXE.

Follow these steps to build a disk image:

1 Start WINIMAGE.
2 Select File, New and choose a disk format as shown in the following

diagram. Any format will do, as long as it is large enough to contain your files.
The default is 1.44Mb, which is fine for our purposes. Click on OK.

3 Drag and drop the files you want in your image to the WINIMAGE window.

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 83 of 239
February 20, 2013

4 Click on Options, Settings and make sure the Truncate unused image part
option is selected, as shown in the following figure. Click on OK.

5 Click on File, Save As, and choose a directory and filename for the disk
image file. The image must be saved as an uncompressed disk image, so be
sure to select Save as type: Image file (*.IMA) as shown in the following
figure.

6 Check the disk image file size to be sure it does not exceed the maximum
size of the PTQ module’s ROM disk (896K bytes). If it is too large, use
WINIMAGE to remove some files from the image, then de-fragment the
image and try again (Note: To de-fragment an image, click on Image, Defrag
current image.

The disk image is now ready to be downloaded to the PTQ module.

For more information on using WINIMAGE, refer to the documentation included
with it.

Note: WINIMAGE is a shareware utility. If you find this program useful, please register it with the
author.

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 84 of 239 ProSoft Technology, Inc.
 February 20, 2013

8.3 Downloading a ROM Disk Image

8.3.1 MVIUPDAT

MVIUPDAT.EXE is a DOS-compatible utility for downloading a ROM disk image
from a host PC to the PTQ-ADM module. MVIUPDAT.EXE uses a serial port on
the PC to communicate with the module. Follow the steps below to download a
ROM disk image:

1 Connect a null-modem serial cable between the serial port on the PC and
PRT1 on the PTQ module.

2 If you are using HyperTerm or a similar terminal program for the PTQ-ADM
module console, exit or disconnect from the serial port before running the
MVI Flash Update tool.

3 Turn off power to the PTQ module. Install the Setup Jumper as described in
the Installation Instructions.

4 Click the START button, and then choose RUN.

5 In the OPEN: field, enter MVIUPDAT. Specify the PC port on the command line
as shown in the following illustration. The default is COM1.

6 Turn on power to the PTQ module. You should see the following menu shown
on the host PC.

+----------------------------+
Main Menu
Verify Module Connection
Update Flash Disk Image
Reboot Module
+----------------------------+

7 Select VERIFY MODULE CONNECTION to verify the connection to the PTQ
module. If the connection is working properly, the message "Module
Responding" will be displayed.

Note: If an error occurs, check your serial port assignments and cable connections. You may also
need to cycle power more than once before the module responds.

8 Select UPDATE FLASH DISK IMAGE to download the ROM disk image. Type the
image file name when prompted. The download progress is displayed as the
file is being transmitted to the module.

9 After the disk image has been transferred, reboot the PTQ module by
selecting the REBOOT MODULE menu item.

10 Exit the MVIUPDAT.EXE utility by pressing [ESC].

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 85 of 239
February 20, 2013

8.4 PTQ System BIOS Setup

The BIOS Setup for the PTQ products contains module configuration settings
and allows for placing the PTQ module in a flash update mode. To access the
BIOS Setup, attach a null modem cable from the PC COM port to the
Status/Debug port on the PTQ module. Start Hyper Term with the appropriate
communication settings for the Debug port. Press [CTRL][C] during the memory
test portion in the booting of the module.

It may be necessary to install the setup jumper in order to access the BIOS
Setup. The setup jumper will be necessary if the Console is disabled. The
following illustration shows the BIOS Setup screen.

The PTQ module can be placed in a mode where it is waiting to receive a new
flash image by selecting the Begin Flash ROM Update Mode option.

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 86 of 239 ProSoft Technology, Inc.
 February 20, 2013

Select PTQ Module Configuration to set the Console, Console Baud Rate and
Compact Flash mode. The Console allows keyboard entry and text output to the
debug port. The baud rate of the console port is selected by the Console Baud
Rate option. In order to use a Compact Flash disk in the PTQ module the
Compact Flash option must be set to CHS mode.

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 87 of 239
February 20, 2013

8.5 Transferring Files to and from the Module with HyperTerminal

You can transfer individual files to and from the Compact Flash drive on the
ADMNET module using the utilities RY.exe (Receive Ymodem) and SY.exe
(Send Ymodem). These two programs work with a terminal client (for example
HyperTerminal) on your desktop PC to connect to the module and transfer files.

RY.exe and SY.exe are included in the sample ADM_TOOL.zip file for your
hardware platform (inRAx, ProLinx or ProTalk).

Important: The embedded operating system in the ADM/ADMNET module restricts file names to
eight "DOS legal" characters or fewer, with a three character extension. For more information on
creating filenames in the proper format refer to pages 17 through 20 of the DOS 6-XL Reference
manual.

8.5.1 Required Hardware

You can connect directly from your computer’s serial port to the serial port on the
module to send (upload) or receive (download) files.

ProSoft Technology recommends the following minimum hardware to connect
your computer to the module:

 80486 based processor (Pentium preferred)
 1 megabyte of memory
 At least one UART hardware-based serial communications port available.

USB-based virtual UART systems (USB to serial port adapters) often do not
function reliably, especially during binary file transfers, such as when
uploading/downloading configuration files or module firmware upgrades.

 A null modem serial cable.

8.5.2 Required Software

In order to send and receive data over the serial port (COM port) on your
computer to the module, you must use a communication program (terminal
emulator).

A simple communication program called HyperTerminal is pre-installed with
recent versions of Microsoft Windows operating systems. If you are connecting
from a machine running DOS, you must obtain and install a compatible
communication program. The following table lists communication programs that
have been tested by ProSoft Technology.

DOS ProComm, as well as several other terminal emulation programs

Windows 3.1 Terminal

Windows 95/98 HyperTerminal

Windows NT/2000/XP HyperTerminal

The RY and SY programs use the Ymodem file transfer protocol to send (upload)
and receive (download) configuration files from your module. If you use a
communication program that is not on the list above, please be sure that it
supports Ymodem file transfers.

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 88 of 239 ProSoft Technology, Inc.
 February 20, 2013

8.5.3 Connecting to the Module

To connect to the module’s Configuration/Debug port:

1 Connect your computer to the module’s port using a null modem cable.
2 Start the communication program on your computer and configure the

communication parameters with the following settings:

Baud Rate 19200

Parity None

Data Bits 8

Stop Bits 1

Software Handshaking None

3 Open the connection. Send the necessary command to terminate the
module’s program.

If there is no response from the module, follow these steps:

1 Verify that the null modem cable is connected properly between your
computer’s serial port and the module. A regular serial cable will not work.

2 Verify that your communication software is using the correct settings for baud
rate, parity and handshaking.

3 On computers with more than one serial port, verify that your communication
program is connected to the same port that is connected to the module.

4 If you are still not able to establish a connection, you can contact ProSoft
Technology Technical Support for further assistance.

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 89 of 239
February 20, 2013

8.5.4 Enabling the Console

Before you can use RY and SY from the command prompt, you must enable the
console in the ADM module’s BIOS.

To change BIOS settings

1 Remove the module from the rack and install the Setup jumper.
2 Return the module to the rack.
3 Connect to the module using HyperTerminal at 19,200 bps, and then cycle

power to reboot the module.

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 90 of 239 ProSoft Technology, Inc.
 February 20, 2013

4 During the memory check portion of the module’s boot sequence, press
[Ctrl][C] to enter the BIOS configuration menu.

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 91 of 239
February 20, 2013

5 Press [Enter] to enter the PTQ-ADM module Configuration menu.

6 On the BIOS configuration menu, use the [Tab] key to navigate through the
menu options, and then use the [+] key to toggle the choices.

The options to change are:

o Console on Port 1: change to Enabled
o Console Baud Rate: change to 57600

7 Press [Esc] to return to the Main Menu.
8 Press [Esc] again to apply your changes and reboot the module.
9 Remove the module from the rack and disable the Setup jumper.

To communicate with the module in Console mode

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 92 of 239 ProSoft Technology, Inc.
 February 20, 2013

1 Change the connection settings in HyperTerminal from 19200 to 57600, and
then reconnect to the module.

2 Press [Esc] to exit the program and return to the command prompt.

Important: The autoexec.bat in the image file must allow the application to exit to a DOS prompt.

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 93 of 239
February 20, 2013

8.5.5 Installing RY.exe and SY.exe

To install RY.exe and SY.exe on the module, remove the Compact Flash card
from the module, and then use a Compact Flash card reader on your PC to copy
the files to the root directory of the Compact Flash card. When you reinsert the
Compact Flash card in the module, use the following syntax to send or receive
files.

C:\RY

or

C:\SY "filename.ext"

The filename and path must be in quotes.

Important: You cannot copy files directly to the A:\ drive on the module. To update files on the A
drive, you must create a new ROM image and download the image to the module using
MVIFlashUpdate. (page 84) The following procedures show how to send and receive files from the
module’s Compact Flash card (drive C:\).

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 94 of 239 ProSoft Technology, Inc.
 February 20, 2013

8.5.6 Downloading Files From a PC to the ADM Module

In order to download files to the module, the ADM module’s running program
must be interrupted. To transfer files to the module, run the RY.EXE program
which uses the YModem protocol.

1 In HyperTerminal, connect to the module at 57600 baud and type the
command to halt the program (for example [Esc] or [Ctrl][C]; your
application must be written to allow itself to exit to the command prompt on
request).

2 At the command prompt, type

C:\RY

3 In HyperTerminal, open the Transfer menu, and then choose Send File.

4 Click the Browse button to navigate to the folder and file to send to the
module.

5 Chose Ymodem from the Protocol dropdown list, and then click Send.

6 The Ymodem File Send dialog box shows the file transfer size and remaining
time.

When the file has been transferred to the module, the dialog box will indicate
that the transfer is complete.

PTQ-ADM ♦ 'C' Programmable Setting Up Your Development Environment
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 95 of 239
February 20, 2013

8.5.7 Uploading files from the ADM module to a PC

In order to upload files from the module, the ADM module’s running program
must be interrupted. You must run the SY.EXE program which uses the YModem
protocol.

1 In HyperTerminal, connect to the module at 57600 baud and type the
command to halt the program (for example [Esc] or [Ctrl][C]; your
application must be written to allow itself to exit to the command prompt on
request).

2 At the command prompt, type

C:\SY "filename.ext"

The filename and path must be in quotes.

3 From the Transfer menu in HyperTerminal, select Receive File. This action
opens the Receive File dialog box.

4 Use the Browse button to choose a folder on your computer to save the file,
5 Select Ymodem as the receiving protocol, and then click the Receive button.

When the file has been transferred to your PC, the dialog box will indicate
that the transfer is complete.

8.6 Debugging Strategies

For simple debugging, printf’s may be inserted into the module application to
display debugging information on the console connected to PRT1.

Setting Up Your Development Environment PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 96 of 239 ProSoft Technology, Inc.
 February 20, 2013

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 97 of 239
February 20, 2013

9 Application Development Libraries

In This Chapter

 ADM API Functions ... 98
 ADM API Initialization Functions ... 100
 ADM API Debug Port Functions .. 102
 ADM API Database Functions ... 109
 ADM API Clock Functions ... 144
 ADM API Backplane Functions ... 146
 ADM LED Functions .. 153
 ADM API Flash Functions ... 153
 ADM API Miscellaneous Functions ... 154
 ADM API RAM Functions .. 157

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 98 of 239 ProSoft Technology, Inc.
 February 20, 2013

9.1 ADM API Functions

This section provides detailed programming information for each of the ADM API
library functions. The calling convention for each API function is shown in 'C'
format.

API library routines are categorized according to functionality.

Function
Category

Function Name Description

Initialization ADM_Open Initialize access to the API

ADMClose Terminate access to the API

Debug Port ADM_ProcessDebug Debug port user interface

ADM_DAWriteSendCtl Writes a data analyzer Tx control symbol

 ADM_DAWriteRecvCtl Writes a data analyzer Rx control symbol

 ADM_DAWriteSendData Writes a data analyzer Tx data byte

 ADM_DAWriteRecvData Writes a data analyzer Rx data byte

 ADM_ConPrint Outputs characters to Debug port

 ADM_CheckDBPort Checks for character input on Debug
port

Database ADM_DBOpen Initializes database

 ADM_DBClose Closes database

 ADM_DBZero Zeros database

 ADM_DBGetBit Read a bit from the database

 ADM_DBSetBit Write a 1 to a bit to the database

 ADM_DBClearBit Write a 0 to a bit to the database

 ADM_DBGetByte Read a byte from the database

 ADM_DBSetByte Write a byte to the database

 ADM_DBGetWord Read a word from the database

 ADM_DBSetWord Write a word to the database

 ADM_DBGetLong Read a double word from the database

 ADM_DBSetLong Write a double word to the database

 ADM_DBGetFloat Read a floating-point number from the
database

 ADM_DBSetFloat Write a floating-point number to the
database

 ADM_DBGetDFloat Read a double floating-point number
from the database

ADM_DBSetDFloat Write a double floating-point number to
the database

 ADM_DBGetBuff Reads a character buffer from the
database

 ADM_DBSetBuff Writes a character buffer to the database

 ADM_DBGetRegs Read multiple word registers from the
database

 ADM_DBSetRegs Write multiple word registers to the
database

 ADM_DBGetString Read a string from the database

 ADM_DBSetString Write a string to the database

 ADM_DBSwapWord Swaps bytes within a word in the
database

 ADM_DBSwapDWord Swaps bytes within a double word in the
database

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 99 of 239
February 20, 2013

Function
Category

Function Name Description

 ADM_GetDBCptr Get a pointer to a character in the
database

 ADM_GetDBIptr Get a pointer to a word in the database

 ADM_GetDBInt Returns an integer from the database

 ADM_DBChanged Tests a database register for a change

 ADM_DBBitChanged Tests a database bit for a change

 ADM_DBOR_Byte Inclusive OR a byte with a database byte

 ADM_DBNOR_Byte Inclusive NOR a byte with a database
byte

 ADM_DBAND_Byte AND a byte with a database byte

 ADM_DBNAND_Byte NAND a byte with a database byte

 ADM_DBXOR_Byte Exclusive OR a byte with a database
byte

 ADM_DBXNOR_Byte Exclusive NOR a byte with a database
byte

Timer ADM_StartTimer Initialize a timer

ADM_CheckTimer Check current timer value

Backplane ADM_BtOpen Opens and initializes backplane interface

ADM_BtClose Closes backplane interface

ADM_BtNext Sets next write block number

ADM_ReadBtCfg Reads configuration from the processor

ADM_BtFunc Handles backplane transfers

ADM_SetStatus Writes status to Error/Status table

ADM_SetBtStatus Writes status to processor

LED ADM_SetLed Turn user LED indicators on or off

Flash ADM_FileGetString Searches for a string in a config file

ADM_FileGetInt Searches for an integer in a config file

ADM_FileGetChar Searches for a char in a config file

ADM_GetVal Gets an integer from a buffer

ADM_GetStr Gets a string from a buffer

ADM_Getc Gets a char from a buffer

ADM_SkipToNext Skips white space

Miscellaneous ADM_GetVersionInfo Get the ADM API version information

ADM_SetConsolePort Enable the console on a port

ADM_SetConsoleSpeed Set the console port baud rate

RAM ADM_EEPROM_ReadConfiguration Read configuration file.

ADM_RAM_Find_Section Find section in the configuration file.

ADM_RAM_GetString Get String under topic name.

ADM_RAM_GetInt Get Integer under topic name.

ADM_RAM_GetLong Get Long under topic name.

ADM_RAM_GetFloat Get Float under topic name.

ADM_RAM_GetDouble Get Double under topic name.

ADM_RAM_GetChar Get Char under topic name.

ADM_Get_BP_Data_Exchange Get Control Data Exchange

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 100 of 239 ProSoft Technology, Inc.
 February 20, 2013

9.2 ADM API Initialization Functions

ADM_Open

Syntax

int ADM_Open(ADMHANDLE *adm_handle);

Parameters

adm_handle Pointer to variable of type ADMHANDLE

Description

ADM_Open acquires access to the ADM API and sets adm_handle to a unique
ID that the application uses in subsequent functions. This function must be called
before any of the other API functions can be used.

IMPORTANT: After the API has been opened, ADM_Close should always be called before exiting
the application.

Return Value

ADM_SUCCESS API was opened successfully

ADM_ERR_REOPEN API is already open

ADM_ERR_NOACCESS API cannot run on this hardware

Note: ADM_ERR_NOACCESS will be returned if the hardware is not from ProSoft Technology.

Example

ADMHANDLE adm_handle;

 if(ADM_Open(&adm_handle) != ADM_SUCCESS)

 {

 printf("\nFailed to open ADM API... exiting program\n");

 exit(1);

 }

See Also

ADM_Close (page 101)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 101 of 239
February 20, 2013

ADM_Close

Syntax

int ADM_Close(ADMHANDLE adm_handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function is used by an application to release control of the API. adm_handle
must be a valid handle returned from ADM_Open.

IMPORTANT: After the API has been opened, this function should always be called before exiting
the application.

Return Value

ADM_SUCCESS API was closed successfully

ADM_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

 ADM_Close(adm_handle);

See Also

ADM_Open (page 100)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 102 of 239 ProSoft Technology, Inc.
 February 20, 2013

9.3 ADM API Debug Port Functions

ADM_ProcessDebug

Syntax

int ADM_ProcessDebug(ADMHANDLE adm_handle, ADM_INTERFACE

*adm_interface_ptr);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function provides a module user interface using the debug port. adm_handle
must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access or user pressed ESC to exit
program

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_ProcessDebug(adm_handle, interface_ptr);

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 103 of 239
February 20, 2013

ADM_DAWriteSendCtl

Syntax

int ADM_DAWriteSendCtl(ADMHANDLE adm_handle, ADM_INTERFACE

*adm_interface_ptr, int app_port, int marker);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

marker Flow control symbol to output to the data analyzer screen

Description

This function may be used to send a transmit flow control symbol to the data
analyzer screen. The control symbol will appear between two angle brackets:
<R+>, <R->, <CS>.

adm_handle must be a valid handle returned from ADM_Open.

Valid values for marker are:

RTSOFF <R->

RTSON <R+>

CTSRCV <CS>

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS adm_handle does not have access

MVI_ERR_BADPARAM Value of marker is not valid

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_DAWriteSendCtl(adm_handle, interface_ptr, app_port, RTSON);

See Also

ADM_DAWriteRecvCtl (page 104)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 104 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DAWriteRecvCtl

Syntax

int ADM_DAWriteRecvCtl(ADMHANDLE adm_handle, ADM_INTERFACE

*adm_interface_ptr, int app_port, int marker);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

marker Flow control symbol to output to the data analyzer screen

Description

This function may be used to send a receive flow control symbol to the data
analyzer screen. The control symbol will appear between two square brackets:
[R+], [R-], [CS].

adm_handle must be a valid handle returned from ADM_Open.

Valid values for marker are:

RTSOFF [R-]

RTSON [R+]

CTSRCV [CS]

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS adm_handle does not have access

MVI_ERR_BADPARAM Value of marker is not valid

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_DAWriteRecvCtl(adm_handle, interface_ptr, app_port, RTSON);

See Also

ADM_DAWriteSendCtl (page 103)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 105 of 239
February 20, 2013

ADM_DAWriteSendData

Syntax

int ADM_DAWriteSendData(ADMHANDLE adm_handle, ADM_INTERFACE

*adm_interface_ptr, int app_port, int length, char *data_buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

length The number of data characters to send to the data analyzer

data_buff The buffer holding the transmit data

Description

This function may be used to send transmit data to the data analyzer screen. The
data will appear between two angle brackets: <data>.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_PORT ports[MAX_APP_PORTS];

Int app_port;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_DAWriteSendData(adm_handle, interface_ptr, app_port,

ports[app_port].len, ports[app_port].buff);

See Also

ADM_DAWriteRecvData (page 106)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 106 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DAWriteRecvData

Syntax

int ADM_DAWriteRecvData(ADMHANDLE adm_handle, ADM_INTERFACE

*adm_interface_ptr, int app_port, int length, char *data_buff);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure which contains structure
pointers needed by the function

app_port Application serial port referenced

length The number of data characters to send to the data analyzer

data_buff The buffer holding the receive data

Description

This function sends receive data to the data analyzer screen. The data will
appear between two square brackets: [data].

adm_handle must be a valid handle returned from ADM_Open.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_PORT ports[MAX_APP_PORTS];

Int app_port;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_DAWriteRecvData(adm_handle, interface_ptr, app_port,

ports[app_port].len, ports[app_port].buff);

See Also

ADM_DAWriteSendData (page 105)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 107 of 239
February 20, 2013

ADM_ConPrint

Syntax

nt ADM_ConPrint(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function outputs characters to the debug port. This function will buffer the
output and allow other functions to run. The buffer is serviced with each call to
ADM_ProcessDebug and can be serviced by the user's program. When sending
data to the debug port, if printf statements are used, other processes will be held
up until the printf function completes execution. Two variables in the interface
structure must be set when data is loaded. The first, buff_ch is the offset of the
next character to print. This should be set to 0. The second is buff_len. This
should be set to the length of the string placed in the buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_ERR_NOACCESS adm_handle does not have access

 Number of characters left in the buffer

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

sprintf(interface.buff,"MVI ADM\n");

 interface.buff_ch = 0;

 interface.buff_len = strlen(interface.buff);

/* write buffer to console */

 while(interface.buff_len)

 {

 interface.buff_len = ADM_ConPrint(adm_handle, interface_ptr);

 }

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 108 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_CheckDBPort

Syntax

int ADM_CheckDBPort(ADMHANDLE adm_handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function checks for input characters on the debug port. adm_handle must be
a valid handle returned from ADM_Open.

Return Value

ADM_ERR_NOACCESS adm_handle does not have access

Returns the character input to the debug port

Example

 int key;

 key = ADM_CheckDBPort(adm_handle);

 printf("key = %i\n", key);

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 109 of 239
February 20, 2013

9.4 ADM API Database Functions

ADM_DBOpen

Syntax

int ADM_DBOpen(ADMHANDLE adm_handle, unsigned short max_size)

Parameters

adm_handle Handle returned by previous call to ADM_Open

max_size Maximum number of words in the database

Description

This function creates a database in the RAM area of the PTQ-ADM module.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_DB_MAX_SIZE max_size has exceeded the maximum allowed

ADM_ERR_REG_RANGE max_size requested was zero

ADM_ERR_OPEN Database already created

ADM_ERR_MEMORY Insufficient memory for database

Example

ADMHANDLE adm_handle;

if(ADM_DBOpen(adm_handle, ADM_MAX_DB_REGS) != ADM_SUCCESS)

 printf("Error setting up Database!\n");

See Also

ADM_DBClose (page 110)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 110 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBClose

Syntax

int ADM_DBClose(ADMHANDLE adm_handle)

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function closes a database previously created by ADM_DBOpen.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_DBClose(adm_handle);

See Also

ADM_DBOpen (page 109)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 111 of 239
February 20, 2013

ADM_DBZero

Syntax

int ADM_DBZero(ADMHANDLE adm_handle)

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

This function writes zeros to a database previously created by ADM_DBOpen.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

Example

ADMHANDLE adm_handle;

ADM_DBZero(adm_handle);

See Also

ADM_DBOpen (page 109)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 112 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBGetBit

Syntax

int ADM_DBGetBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Bit offset into database

Description

This function reads a bit from the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested bit

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

if(ADM_DBGetBit(adm_handle, offset))

 printf("bit is set");

else

 printf("bit is clear");

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 113 of 239
February 20, 2013

ADM_DBSetBit

Syntax

int ADM_DBSetBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Bit offset into database

Description

This function sets a bit to a 1 in the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBSetBit(adm_handle, offset);

See Also

ADM_DBClearBit (page 114)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 114 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBClearBit

Syntax

int ADM_DBClearBit(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Bit offset into database

Description

This function clears a bit to a 0 in the database at a specified bit offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBClearBit(adm_handle, offset);

See Also

ADM_DBSetBit (page 113)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 115 of 239
February 20, 2013

ADM_DBGetByte

Syntax

char ADM_DBGetByte(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

Description

This function reads a byte from the database at a specified byte offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested byte

Example

ADMHANDLE adm_handle;

unsigned short offset;

int i;

i = ADM_DBGetByte(adm_handle, offset);

See Also

ADM_DBSetByte (page 116)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 116 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBSetByte

Syntax

int ADM_DBSetByte(ADMHANDLE adm_handle, unsigned short offset, const char

val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

val Value to be written to the database

Description

This function writes a byte to the database at a specified byte offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const char val;

ADM_DBSetByte(adm_handle, offset, val);

See Also

ADM_DBGetByte (page 115)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 117 of 239
February 20, 2013

ADM_DBGetWord

Syntax

int ADM_DBGetWord(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function reads a word from the database at a specified word offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested word

Example

ADMHANDLE adm_handle;

unsigned short offset;

int i;

i = ADM_DBGetWord(adm_handle, offset);

See Also

ADM_DBSetWord (page 118)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 118 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBSetWord

Syntax

int ADM_DBSetWord(ADMHANDLE adm_handle, unsigned short offset, const short

val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

val Value to be written to the database

Description

This function writes a word to the database at a specified word offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const short val;

ADM_DBSetWord(adm_handle, offset, val);

See Also

ADM_DBGetWord (page 117)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 119 of 239
February 20, 2013

ADM_DBGetLong

Syntax

long ADM_DBGetLong(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Long int offset into database

Description

This function reads a long int from the database at a specified long int offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested long int

Example

ADMHANDLE adm_handle;

unsigned short offset;

long l;

l = ADM_DBGetLong(adm_handle, offset);

See Also

ADM_DBSetLong (page 120)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 120 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBSetLong

Syntax

int ADM_DBSetLong(ADMHANDLE adm_handle, unsigned short offset, const long

val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Long int offset into database

val Value to be written to the database

Description

This function writes a long int to the database at a specified long int offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const long val;

ADM_DBSetLong(adm_handle, offset, val);

See Also

ADM_DBGetLong (page 119)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 121 of 239
February 20, 2013

ADM_DBGetFloat

Syntax

float ADM_DBGetFloat(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset float offset into database

Description

This function reads a floating-point number from the database at a specified float
offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested floating-point number.

Example

ADMHANDLE adm_handle;

unsigned short offset;

float f;

f = ADM_DBGetFloat(adm_handle, offset);

See Also

ADM_DBSetFloat (page 122)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 122 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBSetFloat

Syntax

int ADM_DBSetFloat(ADMHANDLE adm_handle, unsigned short offset, const float

val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset float offset into database

val Value to be written to the database

Description

This function writes a floating-point number to the database at a specified float
offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const float val;

ADM_DBSetFloat(adm_handle, offset, val);

See Also

ADM_DBGetFloat (page 121)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 123 of 239
February 20, 2013

ADM_DBGetDFloat

Syntax

double ADM_DBGetDFloat(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset double float offset into database

Description

This function reads a double floating-point number from the database at a
specified double float offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Requested double floating-point number

Example

ADMHANDLE adm_handle;

unsigned short offset;

double d;

d = ADM_DBGetDFloat(adm_handle, offset);

See Also

ADM_DBSetDFloat (page 124)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 124 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBSetDFloat

Syntax

int ADM_DBSetDFloat(ADMHANDLE adm_handle, unsigned short offset, const

double val)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset double float offset into database

val Value to be written to the database

Description

This function writes a double floating-point number to the database at a specified
double float offset.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const double val;

ADM_DBSetDFloat(adm_handle, offset, val);

See Also

ADM_DBGetDFloat (page 123)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 125 of 239
February 20, 2013

ADM_DBGetBuff

Syntax

char * ADM_DBGetBuff(ADMHANDLE adm_handle, unsigned short offset, const

unsigned short count, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

count Number of characters to retrieve

str String buffer to receive characters

Description

This function copies a buffer of characters in the database to a character buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short char_count;

char *string_buff;

ADM_DBGetBuff(adm_handle, offset, char_count, string_buff);

See Also

ADM_DBSetBuff (page 126)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 126 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBSetBuff

Syntax

int ADM_DBSetBuff(ADMHANDLE adm_handle, unsigned short offset, const

unsigned short count, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

count Number of characters to write

str String buffer to copy characters from

Description

This function copies a buffer of characters to the database.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

NULL adm_handle has no access, the database is not allocated, or count
+ offset is beyond the max size of the database

 Characters from buffer

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short char_count;

char *string_buff = "MVI ADM";

char_count = strlen(string_buff);

ADM_DBSetBuff(adm_handle, offset, char_count, string_buff);

See Also

ADM_DBGetBuff (page 125)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 127 of 239
February 20, 2013

ADM_DBGetRegs

Syntax

unsigned short * ADM_DBGetRegs(ADMHANDLE adm_handle, unsigned short offset,

const unsigned short count, unsigned short * buff)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

count Number of integers to retrieve

buff Register buffer to receive integers

Description

This function copies a buffer of registers in the database to a register buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns NULL if not successful.

Returns buff if successful.

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short reg_count;

unsigned short *reg_buff;

ADM_DBGetRegs(adm_handle, offset, reg_count, reg_buff);

See Also

ADM_DBSetRegs (page 128)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 128 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBSetRegs

Syntax

int ADM_DBSetRegs(ADMHANDLE adm_handle, unsigned short offset, const

unsigned short count, unsigned short * buff)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

count Number of integers to write

buff Register buffer from which integers are copied

Description

This function copies a buffer of registers to the database.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short reg_count;

unsigned short *reg_buff;

ADM_DBSetRegs(adm_handle, offset, reg_count, reg_buff);

See Also

ADM_DBGetRegs (page 127)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 129 of 239
February 20, 2013

ADM_DBGetString

Syntax

char * ADM_DBGetString(ADMHANDLE adm_handle, unsigned short offset, const

unsigned short maxcount, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

maxcount Maximum number of characters to retrieve

str String buffer to receive characters

Description

This function copies a string from the database to a string buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns NULL if not successful.

Returns str if string is copy is successful.

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short maxcount;

char *string_buff;

ADM_DBGetString(adm_handle, offset, maxcount, str);

See Also

ADM_DBSetString (page 130)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 130 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBSetString

Syntax

int ADM_DBSetString(ADMHANDLE adm_handle, unsigned short offset, const

unsigned short maxcount, char * str)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Character offset into database where the buffer starts

maxcount Maximum number of characters to write

str String buffer to copy string from

Description

This function copies a string to the database from a string buffer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

const unsigned short maxcount;

char *string_buff;

ADM_DBSetString(adm_handle, offset, maxcount, str);

See Also

ADM_DBGetString (page 129)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 131 of 239
February 20, 2013

ADM_DBSwapWord

Syntax

int ADM_DBSwapWord(ADMHANDLE adm_handle, unsigned short offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database where swapping is to be performed

Description

This function swaps bytes within a database word.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBSwapWord(adm_handle, offset);

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 132 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBSwapDWord

Syntax

int ADM_DBSwapDWord(ADMHANDLE adm_handle, unsigned short offset, int type)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset long offset into database where swapping is to be performed

type If type = 3 then bytes will be swapped in pairs within the long.

Description

This function swaps bytes within a database long word.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

unsigned short offset;

ADM_DBSwapDWord(adm_handle, offset, 3);

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 133 of 239
February 20, 2013

ADM_GetDBCptr

Syntax

char * ADM_GetDBCptr(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function obtains a pointer to char corresponding to the database + offset
location. Because offset is a word offset, the pointer will always reference a
character on a word boundary.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns NULL if not successful.

Returns pointer to char if successful.

Example

ADMHANDLE adm_handle;

int offset;

char c;

c = *(ADM_GetDBCptr(adm_handle, offset));

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 134 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_GetDBIptr

Syntax

int * ADM_GetDBIptr(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function obtains a pointer to int corresponding to the database + offset
location.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns NULL if not successful.

Returns pointer to int if successful.

Example

ADMHANDLE adm_handle;

int offset;

int i;

i = *(ADM_GetDBIptr(adm_handle, offset));

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 135 of 239
February 20, 2013

ADM_GetDBInt

Syntax

int ADM_GetDBIptr(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function obtains an int corresponding to the database + offset location.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Returns 0 if not successful.

Returns int requested if successful.

Example

ADMHANDLE adm_handle;

int offset;

int i;

i = ADM_GetDBInt(adm_handle, offset);

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 136 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBChanged

Syntax

int ADM_DBChanged(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Word offset into database

Description

This function checks to see if a register has changed since the last call to
ADM_DBChanged.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

0 No change

1 Register has changed

Example

ADMHANDLE adm_handle;

int offset;

if(ADM_DBChanged(adm_handle, offset))

 printf("Data has changed");

else

 printf("Data is unchanged");

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 137 of 239
February 20, 2013

ADM_DBBitChanged

Syntax

int ADM_DBBitChanged(ADMHANDLE adm_handle, int offset)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Bit offset into database

Description

This function checks to see if a bit has changed since the last call to
ADM_DBBitChanged.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

0 No change

1 Bit has changed

Example

ADMHANDLE adm_handle;

int offset;

if(ADM_DBBitChanged(adm_handle, offset))

 printf("Bit has changed");

else

 printf("Bit is unchanged");

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 138 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBOR_Byte

Syntax

int ADM_DBOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be ORed with the byte at offset

Description

This function ORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBOR_Byte(adm_handle, offset, bval);

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 139 of 239
February 20, 2013

ADM_DBNOR_Byte

Syntax

int ADM_DBNOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be NORed with the byte at offset

Description

This function NORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBNOR_Byte(adm_handle, offset, bval);

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 140 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBAND_Byte

Syntax

int ADM_DBAND_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be ANDed with the byte at offset

Description

This function ANDs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBAND_Byte(adm_handle, offset, bval);

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 141 of 239
February 20, 2013

ADM_DBNAND_Byte

Syntax

int ADM_DBNAND_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be NANDed with the byte at offset

Description

This function NANDs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBNAND_Byte(adm_handle, offset, bval);

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 142 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_DBXOR_Byte

Syntax

int ADM_DBXOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be XORed with the byte at offset

Description

This function XORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBXOR_Byte(adm_handle, offset, bval);

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 143 of 239
February 20, 2013

ADM_DBXNOR_Byte

Syntax

int ADM_DBXNOR_Byte(ADMHANDLE adm_handle, int offset, unsigned char bval)

Parameters

adm_handle Handle returned by previous call to ADM_Open

offset Byte offset into database

bval Bit mask to be XNORed with the byte at offset

Description

This function XNORs a byte in the database with a byte-long bit mask.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_MEMORY database is not allocated

ADM_ERR_REG_RANGE offset is out of range

Example

ADMHANDLE adm_handle;

int offset;

unsigned char bval = 0x55;

ADM_DBXNOR_Byte(adm_handle, offset, bval);

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 144 of 239 ProSoft Technology, Inc.
 February 20, 2013

9.5 ADM API Clock Functions

ADM_StartTimer

Syntax

unsigned short ADM_StartTimer(ADMHANDLE adm_handle)

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

ADM_StartTimer can be used to initialize a variable with a starting time with the
current time from a microsecond clock. A timer can be created by making a call
to ADM_StartTimer and by using ADM_CheckTimer to check to see if timeout
has occurred. For multiple timers call ADM_StartTimer using a different variable
for each timer.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Current time value from millisecond clock

Example

Initialize 2 timers.

ADMHANDLE adm_handle;

unsigned short timer1;

unsigned short timer2;

timer1 = ADM_StartTimer(adm_handle);

timer2 = ADM_StartTimer(adm_handle);

See Also

ADM_CheckTimer (page 145)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 145 of 239
February 20, 2013

ADM_CheckTimer

Syntax

int ADM_CheckTimer(ADMHANDLE adm_handle, unsigned short *adm_tmlast, long

*adm_tmout)

Parameters

adm_handle Handle returned by previous call to ADM_Open.

adm_tmlast Starting time of timer returned from call to ADM_StartTimer.

adm_tmout Timeout value in microseconds.

Description

ADM_CheckTimer checks a timer for a timeout condition. Each time the function
is called, ADM_CheckTimer updates the current timer value in adm_tmlast and
the time remaining until timeout in adm_tmout. If adm_tmout is less than 0, then
a 1 is returned to indicate a timeout condition. If the timer has not expired, a 0 will
be returned.

adm_handle must be a valid handle returned from ADM_Open.

Return Value

Timer not expired.

Timer expired.

Example

Check 2 timers.

ADMHANDLE adm_handle;

unsigned short timer1;

unsigned short timer2;

long timeout1;

long timeout2;

timeout1 = 10000000L; /* set timeout for 10 seconds */

timer1 = ADM_StartTimer(adm_handle);

/* wait until timer 1 times out */

while(!ADM_CheckTimer(adm_handle, &timer1, &timeout1))

timeout2 = 5000000L; /* set timeout for 5 seconds */

timer2 = ADM_StartTimer(adm_handle);

/* wait until timer 2 times out */

while(!ADM_CheckTimer(adm_handle, &timer2, &timeout2))

See Also

ADM_StartTimer (page 144)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 146 of 239 ProSoft Technology, Inc.
 February 20, 2013

9.6 ADM API Backplane Functions

ADM_BtOpen

Syntax

int ADM_BtOpen(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function opens and initializes the backplane interface.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

Backplane error number If there is an error writing to the backplane during initialization,
the error code is returned.

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_BtOpen(adm_handle, interface_ptr, verbose);

See Also

ADM_BtClose (page 147)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 147 of 239
February 20, 2013

ADM_BtClose

Syntax

int ADM_BtClose(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function closes the backplane interface.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

 ADM_BtClose(adm_handle, interface_ptr);

See Also

ADM_BtOpen (page 146)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 148 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_BtNext

Syntax

int ADM_BtNext(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

Description

This function sets the next write block number.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_NOTSUPPORTED Function is not supported on this platform

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

ADM_INTERFACE interface;

 interface_ptr = &interface;

 ADM_BtNext(adm_handle, interface_ptr);

See Also

ADM_BtOpen (page 146)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 149 of 239
February 20, 2013

ADM_ReadBtCfg

Syntax

int ADM_ReadBtCfg(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr,

int verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function reads the module configuration from the processor. The function
will make a call to the function pointed to by interface.process_cfg_ptr. The
user function can be used to perform boundary checking on the configuration
parameters.

Return Value

ADM_SUCCESS No errors were encountered

ADM_ERR_NOACCESS adm_handle does not have access, or configuration was
interrupted by operator.

ADM_ERR_NOTSUPPORTED This function is not supported on this platform

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

 interface_ptr = &interface;

ADM_ReadBtCfg(adm_handle, interface_ptr, verbose);

See Also

ADM_BtOpen (page 146)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 150 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_BtFunc

Syntax

int ADM_BtFunc(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr, int

verbose)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

verbose Switch to enable status messages to the debug port. A 1 will
enable messages and a 0 will disable the messages.

Description

This function handles the transfer of data across the backplane.

Return Value

0 Block transfer was successful

1 Invalid block number received

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int verbose = 1;

ADM_INTERFACE interface;

 interface_ptr = &interface;

 /* call backplane transfer logic */

 ADM_BtFunc(adm_handle, interface_ptr, verbose);

See Also

ADM_BtOpen (page 146)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 151 of 239
February 20, 2013

ADM_SetStatus

Syntax

int ADM_SetStatus(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr,

int pass_cnt)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to structures

pass_cnt Counter from user code to indicate module health. This counter could be
updated in the main loop of the program.

Description

This function writes status data to the database at the location set by Error/Status
Pointer in the module configuration. The data is written in the following order:

pass_cnt (in the ADM_INTERFACE structure)

ADM_PRODUCT (structure)

ADM_PORT_ERRORS (structure, 1 time for each application port)

ADM_BLK_ERRORS (structure)

Return Value

ADM_SUCCESS The function has completed successfully.

ADM_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int pass_cnt;

ADM_INTERFACE interface;

 interface_ptr = &interface;

 ADM_SetStatus(adm_handle, interface_ptr, interface.pass_cnt);

See Also

ADM_SetBtStatus (page 152)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 152 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_SetBtStatus

Syntax

int ADM_SetBtStatus(ADMHANDLE adm_handle, ADM_INTERFACE * adm_interface_ptr,

int pass_cnt)

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to ADM_INTERFACE structure to allow API access to
structures

pass_cnt Counter from user code to indicate module health. This counter
could be updated in the main loop of the program.

Description

This function writes status data to the processor at word 202 in the input image
and to the database at location 6670. The data is written in the following order:

pass_cnt (in the ADM_INTERFACE structure)

ADM_PRODUCT (structure)

ADM_PORT_ERRORS (structure, 1 time for each application port)

ADM_BLK_ERRORS (structure)

CurErr (port 1, from ADM_PORT structure)

LastErr (port 1, from ADM_PORT structure)

CurErr (port 2, from ADM_PORT structure)

LastErr (port 2, from ADM_PORT structure)

Return Value

ADM_SUCCESS The function has completed successfully.

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_NOTSUPPORTED This function is not supported on this platform

Example

ADMHANDLE adm_handle;

ADM_INTERFACE *interface_ptr;

int pass_cnt;

ADM_INTERFACE interface;

 interface_ptr = &interface;

 ADM_SetBtStatus(adm_handle, interface_ptr, interface.pass_cnt);

See Also

ADM_SetStatus (page 151)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 153 of 239
February 20, 2013

9.7 ADM LED Functions

ADM_SetLed

Syntax

int ADM_SetLed(ADMHANDLE adm_handle, ADM_INTERFACE *adm_interface_ptr, int

led, int state);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_interface_ptr Pointer to the interface structure

led Specifies which of the user LED indicators is being addressed

state Specifies whether the LED will be turned on or off

Description

ADM_SetLed allows an application to turn the user LED indicators on and off.

adm_handle must be a valid handle returned from ADM_Open.

led must be set to ADM_LED_USER1, ADM_LED_USER2 or
ADM_LED_STATUS for User LED 1, User LED 2 or Status LED, respectively.

state must be set to ADM_LED_OK, ADM_LED_FAULT to turn the Status LED
green or red, respectively. For User LED 1 and User LED 2 state must be set to
ADM_LED_OFF or ADM_LED_ON to turn the indicator On or Off, respectively.

Return Value

ADM_SUCCESS The LED has successfully been set.

ADM_ERR_NOACCESS adm_handle does not have access

ADM_ERR_BADPARAM led or state is invalid.

Example

ADMHANDLE adm_handle;

/* Set Status LED OK, turn User LED 1 off and User LED 2 on */

ADM_SetLed(adm_handle, interface_ptr, ADM_LED_STATUS, ADM_LED_OK);

 ADM_SetLed(adm_handle, interface_ptr, ADM_LED_USER1, ADM_LED_OFF);

 ADM_SetLed(adm_handle, interface_ptr, ADM_LED_USER2, ADM_LED_ON);

)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 154 of 239 ProSoft Technology, Inc.
 February 20, 2013

9.8 ADM API Miscellaneous Functions

ADM_GetVersionInfo

Syntax

int ADM_GetVersionInfo(ADMHANDLE adm_handle, ADMVERSIONINFO *adm_verinfo);

Parameters

adm_handle Handle returned by previous call to ADM_Open

adm_verinfo Pointer to structure of type ADMVERSIONINFO

Description

ADM_GetVersionInfo retrieves the current version of the ADM API library. The
information is returned in the structure adm_verinfo. adm_handle must be a valid
handle returned from ADM_Open.

The ADMVERSIONINFO structure is defined as follows:

typedef struct

{

 char APISeries[4];

 short APIRevisionMajor;

 short APIRevisionMinor;

 long APIRun;

}ADMVERSIONINFO;

Return Value

ADM_SUCCESS The version information was read successfully.

ADI_ERR_NOACCESS adm_handle does not have access

Example

ADMHANDLE adm_handle;

ADMVERSIONINFO verinfo;

/* print version of API library */

 ADM_GetVersionInfo(adm_handle, &adm_version);

printf("Revision %d.%d\n", verinfo.APIRevisionMajor,

verinfo.APIRevisionMinor);

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 155 of 239
February 20, 2013

ADM_SetConsolePort

Syntax

void ADM_SetConsolePort(int Port);

Parameters

Port Com port to use as the console (COM1=0, COM2=1, COM3=2)

Description

ADM_SetConsolePort sets the specified communication port as the console. This
allows the console to be disabled in the BIOS setup and the application can still
configure the console for use.

Return Value

None

Example

 /* enable console on COM1 */

 ADM_SetConsolePort(COM1);

See Also

ADM_SetConsoleSpeed (page 156)

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 156 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_SetConsoleSpeed

Syntax

void ADM_SetConsoleSpeed(int Port, long Speed);

Parameters

Port Com port to use as the console (COM1=0,
COM2=1, COM3=2)

Speed Baud rate for console port.

Available settings are: 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200,
38400, 57600 and 115200.

Description

ADM_SetConsoleSpeed sets the specified communication port to the baud rate
specified.

Return Value

None

Example

 /* set console to 115200 baud */

 ADM_SetConsoleSpeed (COM1, 115200L);

See Also

ADM_SetConsolePort (page 155)

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 157 of 239
February 20, 2013

9.9 ADM API RAM Functions

ADM_RAM_GetString

Syntax

char huge ADM_RAM_GetString (ADMHANDLE adm_handle, char huge * mydata, char

* Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetString tries to find the Topic name passed to the function in the
file.

Return Value

Pointer to the string found in the file or NULL if the sub-section is not found.

Example

 cptr = (char*)ADM_RAM_GetString(adm_handle, tptr, "Module Name");

 if(cptr == NULL)

 strcpy(module.name, "No Module Name");

 else

 {

 if(strlen(cptr) > 80)

 *(cptr+80) = 0;

 strcpy(module.name, cptr);

 if(module.name[strlen(module.name)-1] < 32)

 module.name[strlen(module.name)-1] = 0;

 }

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 158 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_RAM_GetInt

Syntax

unsigned short ADM_RAM_GetInt(ADMHANDLE adm_handle, char huge * mydata, char

* Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetInt tries to find the Topic name passed to the function in the file.

Return Value

Value of type Integer found under the Topic name or 0 if the sub-section is not
found.

Example

 module.err_offset = ADM_RAM_GetInt(adm_handle, tptr, "Baud Rate");

 if(module.err_offset < 0 || module.err_offset > module.max_regs-61)

 {

 module.err_offset = -1;

 module.err_freq = 0;

 }

 else

 {

 module.err_freq = 500;

 }

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 159 of 239
February 20, 2013

ADM_RAM_GetLong

Syntax

unsigned long ADM_RAM_GetLong (ADMHANDLE adm_handle, char huge * mydata,

char * Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetLong tries to find the Topic name passed to the function in the
file.

Return Value

Value of a type Long found under the Topic name or 0 if the sub-section is not
found.

Example

 module.err_offset = ADM_RAM_GetLong(adm_handle, tptr, "Baud Rate");

 if(module.err_offset < 0 || module.err_offset > module.max_regs-61)

 {

 module.err_offset = -1;

 module.err_freq = 0;

 }

 else

 {

 module.err_freq = 500;

 }

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 160 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_RAM_GetFloat

Syntax

float ADM_RAM_GetFloat (ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetFloat tries to find the Topic name passed to the function in the
file.

Return Value

Value of a type Float found under the Topic name or 0 if the sub-section is not
found.

Example

 module.time = ADM_RAM_GetFloat(adm_handle, tptr, "Time");

 if(module.time < 0 || module.time > module.max_regs-61)

 {

 module.time = -1;

 module.err_freq = 0;

 }

 else

 {

 module.err_freq = 500;

 }

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 161 of 239
February 20, 2013

ADM_RAM_GetDouble

Syntax

double ADM_RAM_GetDouble(ADMHANDLE adm_handle, char huge * mydata, char *

Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetDouble tries to find the Topic name passed to the function in the
file.

Return Value

Value of a type Double found under the Topic name or 0 if the sub-section is not
found.

Example

 module.time = ADM_RAM_GetDouble(adm_handle, tptr, "Time");

 if(module.time < 0 || module.time > module.max_regs-61)

 {

 module.time = -1;

 module.err_freq = 0;

 }

 else

 {

 module.err_freq = 500;

 }

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 162 of 239 ProSoft Technology, Inc.
 February 20, 2013

ADM_RAM_GetChar

Syntax

unsigned char ADM_RAM_GetChar (ADMHANDLE adm_handle, char huge * mydata,

char * Topic);

Parameters

adm_handle Handle returned by previous call to ADM_Open

mydata Pointer return from ADM_RAM_Find_Section.

Topic Pointer to name of a variable.

Description

ADM_RAM_GetChar tries to find the Topic name passed to the function in the
file.

Return Value

Character found under the Topic name or ' ' if the sub-section is not found.

Example

 module.enable = ADM_RAM_GetChar(adm_handle, tptr, "Enable");

 if(module.enable == ' ')

 {

 module.time = -1;

 module.err_freq = 0;

 }

 else

 {

 module.err_freq = 500;

 }

PTQ-ADM ♦ 'C' Programmable Application Development Libraries
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 163 of 239
February 20, 2013

ADM_Get_BP_Data_Exchange

Syntax

void ADM_Get_BP_Data_Exchange (ADMHANDLE adm_handle);

Parameters

adm_handle Handle returned by previous call to ADM_Open

Description

ADM_Get_BP_Data_Exchange read the whole, [Backplane Data Exchange],
section, and load all variable for communication between Quantum PLC and
module.

Return Value

None

Example

 ADM_Get_BP_Data_Exchange(adm_handle);

Application Development Libraries PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 164 of 239 ProSoft Technology, Inc.
 February 20, 2013

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 165 of 239
February 20, 2013

10 Backplane API Functions

In This Chapter

 Backplane API Initialization Functions ... 167
 Backplane API Configuration Functions .. 169
 Backplane API Synchronization Functions .. 173
 Backplane API Direct I/O Access .. 175
 Backplane API Messaging Functions .. 177
 Backplane API Miscellaneous Functions ... 181

This section provides detailed programming information for each of the API
library functions. The calling convention for each API function is shown in 'C'
format.

The API library routines are categorized according to functionality as follows:

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 166 of 239 ProSoft Technology, Inc.
 February 20, 2013

Initialization

MVIbp_Open

MVIbp_Close

Configuration

MVIbp_GetIOConfig

MVIbp_SetIOConfig

Synchronization

MVIbp_WaitForInputScan

MVIbp_WaitForOutputScan

Direct I/O Access

MVIbp_ReadOutputImage

MVIbp_WriteInputImage

Messaging

MVIbp_ReceiveMessage

MVIbp_SendMessage

Miscellaneous

MVIbp_GetVersionInfo

MVIbp_ErrorString

MVIbp_SetUserLED

MVIbp_SetModuleStatus

MVIbp_GetSetupMode

MVIbp_GetConsoleMode

MVIbp_SetConsoleMode

MVIbp_GetModuleInfo

MVIbp_GetProcessorStatus

MVIbp_Sleep

Platform Specific

MVIbp_WriteModuleFile

MVIbp_ReadModuleFile

MVIbp_SetModuleInterrupt

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 167 of 239
February 20, 2013

10.1 Backplane API Initialization Functions

MVIbp_Open

Syntax

int MVIbp_Open(MVIHANDLE *handle);

Parameters

handle Pointer to variable of type MVIHANDLE

Description

MVIbp_Open acquires access to the API and sets handle to a unique ID that the
application uses in subsequent functions. This function must be called before any
of the other API functions can be used.

IMPORTANT: After the API has been opened, MVIbp_Close should always be called before
exiting the application.

Return Value

MVI_SUCCESS API was opened successfully

MVI_ERR_REOPEN API is already open

MVI_ERR_NODEVICE Backplane driver could not be accessed

Note: MVI_ERR_NODEVICE will be returned if the backplane device driver is not loaded.

Example

MVIHANDLE Handle;

if (MVIbp_Open(&Handle) != MVI_SUCCESS) {

 printf("Open failed!\n");

} else {

 printf("Open succeeded\n");

}

See Also

MVIbp_Close (page 168)

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 168 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIbp_Close

Syntax

int MVIbp_Close(MVIHANDLE handle);

Parameters

handle Handle returned by previous call to MVIbp_Open

Description

This function is used by an application to release control of the API. handle must
be a valid handle returned from MVIbp_Open.

IMPORTANT: After the API has been opened, this function should always be called before exiting
the application.

Return Value

MVI_SUCCESS API was closed successfully

MVI_ERR_NOACCESS Handle does not have access

Example

MVIHANDLE Handle;

MVIbp_Close(Handle);

See Also

MVIbp_Open (page 167)

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 169 of 239
February 20, 2013

10.2 Backplane API Configuration Functions

MVIbp_GetIOConfig

Syntax

int MVIbp_GetIOConfig(MVIHANDLE handle, MVIBPIOCONFIG *ioconfig);

Parameters

handle Handle returned by previous call to MVIbp_Open

ioconfig Pointer to MVIBPIOCONFIG structure to receive configuration information

Description

This function obtains the I/O configuration of the PTQ module. handle must be a
valid handle returned from MVIbp_Open.

The MVIBPIOCONFIG structure is defined as shown:

typedef struct tagMVIBPIOCONFIG

{

 WORD TotalInputSize; // Size of entire input image in words

 WORD TotalOutputSize; // Size of entire output image in words

 WORD DirectInputSize; // Input words available for direct access

 WORD DirectOutputSize; // Output words available for direct access

 WORD MsgRcvBufSize; // Max size in words for received messages

 WORD MsgSndBufSize; // Max size in words for sent messages

} MVIBPIOCONFIG;

The sizes in words of the module’s input and output images are returned in the
MVIBPIOCONFIG structure pointed to by ioconfig. The TotalInputSize and
TotalOutputSize members are set equal to the size of the entire input or output
image, respectively. The DirectInputSize and DirectOutputSize members are set
equal to the number of words of the respective image that is available for direct
access via the MVIbp_WriteInputImage or MVIbpReadOutputImage functions. By
default, the direct and total sizes are equal. Refer to the MVIbp_SetIOConfig
function for more information.

The MsgRcvBufSize and MsgSndBufSize members indicate the maximum size in
words for received or sent messages, respectively. By default, these values are
both zero, indicating that messaging is disabled. Refer to the MVIbp_SetIOConfig
function for more information.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

MVIBPIOCONFIG ioconfig;

MVIbp_GetIOConfig(handle, &ioconfig);

printf("%d words of input image available\n", ioconfig.DirectInputSize);

printf("%d words of output image available\n", ioconfig.DirectOutputSize);

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 170 of 239 ProSoft Technology, Inc.
 February 20, 2013

See Also

MVIbp_SetIOConfig (page 171)

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 171 of 239
February 20, 2013

MVIbp_SetIOConfig

Syntax

int MVIbp_SetIOConfig(MVIHANDLE handle, MVIBPIOCONFIG *ioconfig);

Parameters

handle Handle returned by previous call to MVIbp_Open

ioconfig Pointer to MVIBPIOCONFIG structure which contains configuration
information

Description

This function defines the portion of the module’s I/O images that will be used for
direct I/O access, and to enable messaging. handle must be a valid handle
returned from MVIbp_Open.

By default, all of the module’s I/O image is available for direct I/O access, and
messaging is disabled. The MVIbp_SetIOConfig may be used to limit the amount
of I/O image available for direct access to only that which the application expects
to use. Attempts to access I/O outside of the range defined by this function will
result in an error.

If the application is to use the messaging functions (MVIbp_SendMessage and
MVIbp_ReceiveMessage), MVIbp_SetIOConfig must be called to enable
messaging and setup the maximum message size that will be allowed. The
message size is expressed in words.

The MVIBPIOCONFIG structure is defined as shown:

typedef struct tagMVIBPIOCONFIG

{

 WORD TotalInputSize; // Size of entire input image in words

 WORD TotalOutputSize; // Size of entire output image in words

 WORD DirectInputSize; // Input words available for direct access

 WORD DirectOutputSize; // Output words available for direct access

 WORD MsgRcvBufSize; // Max size in words for received messages

 WORD MsgSndBufSize; // Max size in words for sent messages

} MVIBPIOCONFIG;

The TotalInputSize and TotalOutputSize members are ignored by the API, since
the total I/O image sizes cannot be changed by the application. The
DirectInputSize and DirectOutputSize members should be set equal to the
number of words of the respective image that will be used for direct access via
the MVIbp_WriteInputImage or MVIbpReadOutputImage functions.

To enable the module to receive messages from the control processor via the
MVIbp_ReceiveMessage function, the MsgRcvBufSize member should be set to
the maximum message size expected. Likewise, to enable the module to send
messages to the control processor via the MVIbp_SendMessage function, the
MsgSndBufSize member should be set to the maximum message size expected.
The message sizes are expressed in words. The combined maximum message
size is 2048 words. If the sum of MsgRcvBufSize and MsgSndBufSize exceeds
2048, the error MVI_ERR_BADCONFIG will be returned.

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 172 of 239 ProSoft Technology, Inc.
 February 20, 2013

Notes

If messaging is enabled, a portion of the input and output images must be
reserved for use by the messaging protocol. One word of input and one word of
output is required for messaging control. At least one additional word of input
and/or output is required for messaging data, depending upon the messaging
direction(s) enabled. To receive messages from the control processor, at least
one word of output image is required for messaging data. To send messages to
the control processor, at least one word of input image is required for messaging
data. Therefore, for bi-directional messaging, at least two words of input and two
words of output image must be left unallocated when the direct I/O sizes are
specified. If messaging is enabled and insufficient I/O image is available for
messaging, the error MVI_ERR_BADCONFIG will be returned.

For best messaging performance, set the direct I/O sizes as small as possible.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADCONFIG Configuration is not valid

MVI_ERR_NOTSUPPORTED Always returns this error

Example

MVIHANDLE handle;

MVIBPIOCONFIG ioconfig;

ioconfig.DirectInputSize = 2; // 2 words used for input

ioconfig.DirectOutputSize = 1; // 1 word used for output

MsgSndBufSize = 256; // Enable 256 word (max) messages to

processor

MsgRcvBufSize = 0; // Received messages not enabled

if (MVI_SUCCESS != MVIbp_SetIOConfig(handle, &ioconfig))

 printf("Error: I/O configuration failed\n");

See Also

MVIbp_GetIOConfig (page 169)

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 173 of 239
February 20, 2013

10.3 Backplane API Synchronization Functions

MVIbp_WaitForInputScan

Syntax

int MVIbp_WaitForInputScan(MVIHANDLE handle, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

timeout Maximum number of milliseconds to wait for
scan

Description

MVIbp_WaitForInputScan allows an application to synchronize with the scan of
the module’s input image. This function will return immediately after the input
image has been read.

handle must be a valid handle returned from MVIbp_Open. timeout specifies the
number of milliseconds that the function will wait for the input scan to occur.

Return Value

MVI_SUCCESS The input scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_TIMEOUT The timeout expired before an input scan
occurred.

Example

MVIHANDLE Handle;

/* Wait here until input scan, 50ms timeout */

rc = MVIbp_WaitForInputScan(Handle, 50);

if (rc == MVI_ERR_TIMEOUT)

 printf("Input scan did not occur within 50 milliseconds\n");

else

 printf("Input scan has occurred\n");

See Also

MVIbp_WaitForOutputScan (page 174)

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 174 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIbp_WaitForOutputScan

Syntax

int MVIbp_WaitForOutputScan(MVIHANDLE handle, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

timeout Maximum number of milliseconds to wait for scan

Description

MVIbp_WaitForInputScan allows an application to synchronize with the scan of
the module’s output image. This function will return immediately after the
module’s output image has been written.

handle must be a valid handle returned from MVIbp_Open. timeout specifies the
number of milliseconds that the function will wait for the output scan to occur.

Return Value

MVI_SUCCESS The output scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_TIMEOUT The timeout expired before an output scan occurred.

MVI_ERR_BADCONFIG The data connection is not open

Example

MVIHANDLE Handle;

int rc;

/* Wait here until output scan, 50ms timeout */

rc = MVIbp_WaitForOutputScan(Handle, 50);

if (rc == MVI_ERR_TIMEOUT)

 printf("Output scan did not occur within 50ms\n");

else

 printf("Output scan has occurred\n");

See Also

MVIbp_WaitForInputScan (page 173)

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 175 of 239
February 20, 2013

10.4 Backplane API Direct I/O Access

MVIbp_ReadOutputImage

Syntax

int MVIbp_ReadOutputImage(MVIHANDLE handle, WORD *buffer, WORD offset, WORD

length);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer to receive data from output image

offset Word offset into output image at which to begin reading

length Number of words to read

Description

MVIbp_ReadOutputImage reads from the module’s output image. handle must
be a valid handle returned from MVIbp_Open.

buffer must point to a buffer of at least length words in size.

offset specifies the word in the output image to begin reading, and length
specifies the number of words to read. The error MVI_ERR_BADPARAM will be
returned if an attempt is made to access the output image beyond the range
configured for direct I/O. Refer to the MVIbp_SetIOConfig function for more
information.

The output image is written by the control processor and read by the module.

Return Value

MVI_SUCCESS The data was read from the output image successfully.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM Parameter contains invalid value

MVI_ERR_BADCONFIG The data connection is not open.

Example

MVIHANDLE Handle;

WORD buffer[8];

int rc;

/* Read 8 words of data from the output image, starting with word 2 */

rc = MVIbp_ReadOutputImage(Handle, buffer, 2, 8);

if (rc != MVI_SUCCESS)

 printf("ERROR: MVIbp_ReadOutputImage failed");

See Also

MVIbp_SetIOConfig (page 171)

MVIbp_WriteInputImage (page 176)

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 176 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIbp_WriteInputImage

Syntax

int MVIbp_WriteInputImage(MVIHANDLE handle, WORD *buffer, WORD offset, WORD

length);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer of data to be written to input image

offset Word offset into input image at which to begin writing

length Number of words to write

Description

MVIbp_WriteInputImage writes to the module’s input image. handle must be a
valid handle returned from MVIbp_Open.

buffer must point to a buffer of at least length words in size.

offset specifies the word in the input image to begin writing, and length specifies
the number of words to write. The error MVI_ERR_BADPARAM will be returned
if an attempt is made to access the input image beyond the range configured for
direct I/O. If this error is returned, no data will be written to the input image. Refer
to the MVIbp_SetIOConfig function for more information.

The input image is written by the module and read by the control processor.

Return Value

MVI_SUCCESS The data was written to the input image successfully.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM Parameter contains invalid value

MVI_ERR_BADCONFIG The data connection is not open

Example

MVIHANDLE Handle;

WORD buffer[2];

int rc;

/* Write 2 words of data to the input image, starting with word 0 */

rc = MVIbp_WriteInputImage(Handle, buffer, 0, 2);

if (rc != MVI_SUCCESS)

 printf("ERROR: MVIbp_WriteInputImage failed");

See Also

MVIbp_SetIOConfig (page 171)

MVIbp_ReadOutputImage (page 175)

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 177 of 239
February 20, 2013

10.5 Backplane API Messaging Functions

MVIbp_ReceiveMessage

Syntax

int MVIbp_ReceiveMessage(MVIHANDLE handle, WORD *buffer, WORD *length, WORD

reserved, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer to receive message data from processor

length Pointer to a variable containing the maximum message length in words.
When this function is called, this should be set to the size of the indicated
buffer. Upon successful return, this variable will contain the actual received
message length.

reserved Must be set to 0

timeout Maximum number of milliseconds to wait for message

Description

This function retrieves a message sent from the control processor. handle must
be a valid handle returned from MVIbp_Open.

Upon calling this function, length should contain the maximum message size in
words to be received. buffer must point to a buffer of at least length words in size.
Upon successful return, length will contain the actual length of the message
received.

If length exceeds the maximum message size specified by the value
MsgRcvBufSize (refer to the MVIbp_SetIOConfig function),
MVI_ERR_BADPARAM will be returned.

reserved is not used and must be set to zero. MVI_ERR_BADPARAM will be
returned if reserved is not zero.

timeout specifies the number of milliseconds that the function will wait for a
message. To poll for a message without waiting, set timeout to zero. If no
message has been received, MVI_ERR_TIMEOUT will be returned.

Before this function can be used, messaging must be enabled with the
MVIbp_SetIOConfig function. If messaging has not been enabled,
MVI_ERR_BADCONFIG will be returned.

If the message received from the control processor is larger than length, the
message will be truncated to length words and MVI_ERR_MSGTOOBIG will be
returned.

The MVIbp_ReceiveMessage function retrieves data written to the PTQ-ADM
module by the processor via a MSG instruction. The MSG instruction must be
configured as shown in table A. The MSG instruction implements a "put attribute'
command to the PTQ module’s assembly object. The MSG instruction will fail if a
message has already been written to the PTQ module but application has not yet
retrieved the message via MVIbp_ReceiveMessage.

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 178 of 239 ProSoft Technology, Inc.
 February 20, 2013

Receive MSG Instruction Configuration

Field Value Description

Message Type CIP Generic Specify CIP message type

Service Code 10 (Hex) Set_Attribute_Single service

Object Type 4 Assembly object class code

Object ID 8 Output message instance number

Object Attribute 3 Data attribute

Num Elements Application dependent Size of message to be written

Path Application dependent Path to PTQ module

Return Value

MVI_SUCCESS A message has been received.

MVI_ERR_NOACCESS handle does not have access.

MVI_ERR_TIMEOUT The timeout occurred before a message was received.

MVI_ERR_BADPARAM A parameter is invalid.

MVI_ERR_BADCONFIG Receive messaging is not enabled.

MVI_ERR_MSGTOOBIG The received message is too big for the buffer.

Example

MVIHANDLE Handle;

int rc;

WORD buffer[256];

WORD length;

length = 256; // maximum message size that can be received

// Wait up to 5 seconds for a message

rc = MVIbp_ReceiveMessage(Handle, buffer, &length, 0, 5000);

if (rc == MVI_SUCCESS)

 printf("Message received. Length is %d words\n", length);

See Also

MVIbp_SetIOConfig (page 171)

MVIbp_SendMessage (page 179)

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 179 of 239
February 20, 2013

MVIbp_SendMessage

Syntax

int MVIbp_SendMessage(MVIHANDLE handle, WORD *buffer, WORD length,

WORD reserved, WORD timeout);

Parameters

handle Handle returned by previous call to MVIbp_Open

buffer Pointer to buffer of data to send to processor

length The length in words of the message to send.

reserved Must be set to 0

timeout Maximum number of milliseconds to wait for processor to read message

Description

This function sends a message to the control processor. handle must be a valid
handle returned from MVIbp_Open.

Upon calling this function, length should contain the message size in words.
buffer must point to a buffer of at least length words in size.

If length exceeds the maximum message size specified by the value
MsgSndBufSize (refer to the MVIbp_SetIOConfig function),
MVI_ERR_BADPARAM will be returned.

timeout specifies the number of milliseconds that the function will wait for the
message to transfer to the control processor. If the timeout occurs before the
message has been transferred, MVI_ERR_TIMEOUT will be returned.

If timeout is 0, the function will return immediately. If the message was
successfully queued to be sent, MVI_SUCCESS will be returned. If the message
was not queued (for example, a previous message is being sent),
MVI_ERR_TIMEOUT will be returned and the message must be re-tried at a later
time. A timeout of 0 allows an application to perform other tasks while the
message is being transmitted.

Before this function can be used, messaging must be enabled with the
MVIbp_SetIOConfig function. If messaging has not been enabled,
MVI_ERR_BADCONFIG will be returned.

Notes

The MVIbp_SendMessage function copies the message data into a buffer to be
retrieved by the processor via a MSG instruction. The MSG instruction must be
configured as shown in table B. The MSG instruction implements a "get attribute"
command to the PTQ module’s assembly object. The MSG instruction will fail if a
message has not already been written by the application via
MVIbp_SendMessage.

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 180 of 239 ProSoft Technology, Inc.
 February 20, 2013

Send MSG Instruction Configuration

Field Value Description

Message Type CIP Generic Specify CIP message type

Service Code OE (Hex) Get_Attribute_Single service

Object Type 4 Assembly object class code

Object ID 7 Output message instance number

Object Attribute 3 Data attribute

Num Elements Application dependent Size of message to be written

Path Application dependent Path to PTQ module

Return Value

MVI_SUCCESS A message has been received.

MVI_ERR_NOACCESS handle does not have access.

MVI_ERR_TIMEOUT The timeout occurred before the message was transferred.

MVI_ERR_BADPARAM A parameter is invalid.

MVI_ERR_BADCONFIG Send messaging is not enabled.

Example

MVIHANDLE Handle;

int rc;

WORD buffer[256];

// Wait 5 seconds for the message to be sent

rc = MVIbp_SendMessage(Handle, buffer, 256, 5000);

if (rc == MVI_SUCCESS)

 printf("Message sent\n");

See Also

MVIbp_SetIOConfig (page 171)

MVIbp_ReceiveMessage (page 177)

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 181 of 239
February 20, 2013

10.6 Backplane API Miscellaneous Functions

MVIbp_GetVersionInfo

Syntax

int MVIbp_GetVersionInfo(MVIHANDLE handle, MVIBPVERSIONINFO *verinfo);

Parameters

handle Handle returned by previous call to MVIbp_Open

verinfo Pointer to structure of type MVIBPVERSIONINFO

Description

MVIbp_GetVersionInfo retrieves the current version of the API library and the
backplane device driver. The information is returned in the structure verinfo.
handle must be a valid handle returned from MVIbp_Open.

The MVIBPVERSIONINFO structure is defined as follows:

typedef struct tagMVIBPVERSIONINFO

{

 WORD APISeries; /* API series */

 WORD APIRevision; /* API revision */

 WORD BPDDSeries;/* Backplane device driver series */

 WORD BPDDRevision; /* Backplane device driver revision */

 BYTE Reserved[8]; /* Reserved */

} MVIBPVERSIONINFO;

Return Value

MVI_SUCCESS The version information was read successfully.

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE Handle;

MVIBPVERSIONINFO verinfo;

/* print version of API library */

MVIbp_GetVersionInfo(Handle,&verinfo);

printf("Library Series %d, Rev %d\n", verinfo.APISeries,

verinfo.APIRevision);

printf("Driver Series %d, Rev %d\n", verinfo.BPDDSeries,

verinfo.BPDDRevision);

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 182 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIbp_GetModuleInfo

Syntax

int MVIbp_GetModuleInfo(MVIHANDLE handle, MVIBPMODULEINFO *modinfo);

Parameters

handle Handle returned by previous call to MVIbp_Open

modinfo Pointer to structure of type MVIBPMODULEINFO

Description

MVIbp_GetModuleInfo retrieves identity information for the module. The
information is returned in the structure modinfo. handle must be a valid handle
returned from MVIbp_Open.

The MVIBPMODULEINFO structure is defined as follows:

typedef struct tagMVIBPMODULEINFO

{

 WORD VendorID; // Reserved

 WORD DeviceType; // Reserved

 WORD ProductCode; // Device model code

 BYTE MajorRevision; // Device major revision

 BYTE MinorRevision; // Device minor revision

 DWORD SerialNo; // Serial number

 BYTE Name[32]; // Device name (string)

 BYTE Month; // Date of manufacture - month

 BYTE Day; // Date of manufacture - day

 WORD Year; // Date of manufacture - year

} MVIBPMODULEINFO;

Return Value

MVI_SUCCESS The version information was read successfully.

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE Handle;

MVIBPMODULEINFO modinfo;

/* print module name */

MVIbp_GetModuleInfo(Handle,&modinfo);

printf("Name is %s\n", modinfo.Name);

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 183 of 239
February 20, 2013

MVIbp_ErrorString

Syntax

int MVIbp_ErrorString(int errcode, char *buf);

Parameters

errcode Error code returned from an API function

buf Pointer to user buffer to receive message

Description

MVIbp_ErrorStr returns a text error message associated with the error code
errcode. The null-terminated error message is copied into the buffer specified by
buf. The buffer should be at least 80 characters in length.

Return Value

MVI_SUCCESS Message returned in buf

MVI_ERR_BADPARAM Unknown error code

Example

char buf[80];

int rc;

/* print error message */

MVIbp_ErrorString(rc, buf);

printf("Error: %s", buf);

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 184 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIbp_SetUserLED

Syntax

int MVIbp_SetUserLED(MVIHANDLE handle, int lednum, int ledstate);

Parameters

handle Handle returned by previous call to MVIbp_Open

lednum Specifies which of the user LED indicators is being addressed

Description

MVIbp_SetUserLED allows an application to turn the user LED indicators on and
off. handle must be a valid handle returned from MVIbp_Open.

lednum must be set to MVI_LED_USER1 or MVI_LED_USER2 to select User
LED 1 or User LED 2, respectively.

ledstate must be set to MVI_LED_STATE_ON or MVI_LED_STATE_OFF to turn
the indicator On or Off, respectively.

Return Value

MVI_SUCCESS The input scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example

MVIHANDLE Handle;

/* Turn User LED 1 on and User LED 2 off */

MVIbp_SetUserLED(Handle, MVI_LED_USER1, MVI_LED_STATE_ON);

MVIbp_SetUserLED(Handle, MVI_LED_USER2, MVI_LED_STATE_OFF);

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 185 of 239
February 20, 2013

MVIbp_SetModuleStatus

Syntax

int MVIbp_SetModuleStatus(MVIHANDLE handle, int status);

Parameters

handle Handle returned by previous call to MVIbp_Open

status Module status, OK or Faulted

Description

MVIbp_SetModuleStatus allows an application set the state of the module to OK
or Faulted. handle must be a valid handle returned from MVIbp_Open.

state must be set to MVI_MODULE_STATUS_OK or
MVI_MODULE_STATUS_FAULTED. If the state is OK, the module status LED
indicator will be set to Green. If the state is Faulted, the status indicator will be
set to Red.

Note: The MVI hardware can set the OK LED to Red if any of the following occurs:
 an unrecoverable fault
 hardware failure
 backplane driver failure
 Neither the PTQ hardware, nor the Set ModuleStatus call has priority. Either can overwrite the

other.

Return Value

MVI_SUCCESS The input scan has occurred.

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADPARAM lednum or ledstate is invalid.

Example

MVIHANDLE Handle;

/* Set the Status indicator to Red */

MVIbp_SetModuleStatus(Handle, MVI_MODULE_STATUS_FAULTED);

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 186 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIbp_GetConsoleMode

Syntax

int MVIbp_GetConsoleMode(MVIHANDLE handle, int *mode, int *baud);

Parameters

handle Handle returned by previous call to MVIbp_Open

mode Pointer to an integer that is set to 1 if the console is installed, or 0 if the
console is not enabled.

baud Pointer to an integer that is set to the console baud rate index if the
console is enabled.

Description

This function is used to query the state of the console. handle must be a valid
handle returned from MVIbp_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the console is enabled, or 0 if the console is disabled.

baud is a pointer to an integer. When this function returns, baud will be set to the
console’s baud index value if the console is enabled. baud is not set if the
console is disabled.

It may be useful for an application to detect that the console is enabled and allow
user interaction.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int mode;

MVIbp_GetConsoleMode(handle, &mode);

if (mode)

 // Console is enabled - allow user interaction

else

 // Console is not available - normal operation

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 187 of 239
February 20, 2013

MVIbp_GetSetupMode

Syntax

int MVIbp_GetSetupMode(MVIHANDLE handle, int *mode);

Parameters

handle Handle returned by previous call to MVIbp_Open

mode Pointer to an integer that is set to 1 if the Setup Jumper is installed, or 0 if
the Setup Jumper is not installed.

Description

This function is used to query the state of the Setup Jumper. handle must be a
valid handle returned from MVIbp_Open.

mode is a pointer to an integer. When this function returns, mode will be set to 1
if the module is in Setup Mode, or 0 if not.

If the Setup Jumper is installed, the module is considered to be in Setup Mode. It
may be useful for an application to detect Setup Mode and perform special
configuration or diagnostic functions.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int mode;

MVIbp_GetSetupMode(handle, &mode);

if (mode)

 // Setup Jumper is installed - perform configuration/diagnostic

else

 // Not in Setup Mode - normal operation

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 188 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIbp_GetProcessorStatus

Syntax

int MVIbp_GetProcessorStatus(MVIHANDLE handle, WORD *pstatus);

Parameters

handle Handle returned by previous call to MVIbp_Open

pstatus Pointer to a word that will be updated with the current processor status.

Description

This function is used to query the state of the processor. handle must be a valid
handle returned from MVIbp_Open.

pstatus is a pointer to an word. When this function returns, certain bits in this
word will be set to indicate the current processor status, as shown in Figure 6.

Processor Status Bits

Bit Name Description

0 MVI_PROCESSOR_STATUS_RUN Set if processor is in Run Mode

1 MVI_DATA_CONNECTION_OPEN Set if data connection is open

2 MVI_STATUS_CONNECTION_OPEN Set if status connection is open

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

MVI_ERR_BADCONFIG The data connection is not open

Example

MVIHANDLE handle;

WORD status;

MVIbp_GetProcessorStatus(handle, &status);

if (status & MVI_PROCESSOR_STATUS_RUN)

// Processor is in Run Mode

else

// Processor is not in Run Mode or there is no connection

PTQ-ADM ♦ 'C' Programmable Backplane API Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 189 of 239
February 20, 2013

MVIbp_Sleep

Syntax

int MVIbp_Sleep(MVIHANDLE handle, WORD msdelay);

Parameters

handle Handle returned by previous call to MVIbp_Open

msdelay Time in milliseconds to suspend task

Description

MVIbp_Sleep suspends the calling thread for at least msdelay milliseconds. The
actual delay may be several milliseconds longer than msdelay, due to system
overhead and the system timer granularity (5ms).

Return Value

MVI_SUCCESS Success

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int timeout=200;

// Simple timeout loop

while(timeout--)

{

// Poll for data, and so on.

// Break if condition is met (no timeout)

// Else sleep a bit and try again

MVIbp_Sleep(10);

}

Backplane API Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 190 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIbp_SetConsoleMode

Syntax

int MVIbp_SetConsoleMode(MVIHANDLE handle, int mode, int baud);

Parameters

handle Handle returned by previous call to MVIbp_Open

mode An integer that is set to 1 if the console is to be enabled, or 0 if the console
is not enabled.

baud An integer that is set to the desired console baud rate index if the console
is enabled.

Description

This function sets the state of the console. handle must be a valid handle
returned from MVIbp_Open.

mode is an integer that contains the desired state of the console. mode should
be set to 1 if the console is to be enabled, or 0 if the console is to be disabled.

baud is an integer that contains the desired baud rate of the console. baud
should be set to the console’s baud index value if the console is enabled. The
baud index values are shown in Table 3.

The state of the console is normally configured with the BIOS setup menu and is
saved in battery-backed memory. If the module is removed from power for a
period of time and the battery discharges, then the state information is lost. This
function allows an application to store a desired console state into the battery-
backed memory.

Note: If the Setup Jumper is installed, the console is enabled at 19200 baud.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS handle does not have access

Example

MVIHANDLE handle;

int mode,baud;

mode = 1; // enable the console

baud = 8; // set baud rate to 19200 baud

MVIbp_SetConsoleMode(handle, mode, baud);

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 191 of 239
February 20, 2013

11 Serial Port Library Functions

In This Chapter

 Serial Port API Initialization Functions ... 193
 Serial Port API Configuration Functions .. 198
 Serial Port API Status Functions ... 200
 Serial Port API Communications ... 208
 Serial Port API Miscellaneous Functions ... 222

This section provides detailed programming information for each of the API
library functions. The calling convention for each API function is shown in 'C'
format.

The API library routines are categorized according to functionality as follows:

Initialization

MVIsp_Open

MVIsp_Close

MVIsp_OpenAlt

Configuration

MVIsp_Config

MVIsp_SetHandshaking

Port Status

MVIsp_SetRTS, MVIsp_GetRTS

MVIsp_SetDTR, MVIsp_GetDTR

MVIsp_GetCTS

MVIsp_GetDSR

MVIsp_GetDCD

MVIsp_GetLineStatus

Communications

MVIsp_Putch

MVIsp_Puts

MVIsp_PutData

MVIsp_Getch

MVIsp_Gets

MVIsp_GetData

MVIsp_GetCountUnsent

MVIsp_GetCountUnread

MVIsp_PurgeDataUnsent

MVIsp_PurgeDataUnread

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 192 of 239 ProSoft Technology, Inc.
 February 20, 2013

Miscellaneous

MVIsp_GetVersionInfo

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 193 of 239
February 20, 2013

11.1 Serial Port API Initialization Functions

MVIsp_Open

Syntax

int MVIsp_Open(int comport, BYTE baudrate, BYTE parity, BYTE wordlen,

BYTE stopbits);

Parameters

comport Communications Port to open

baudrate Baud rate for this port

parity Parity setting for this port

wordlen Number of bits for each character

stopbits Number of stop bits for each character

Description

MVIsp_Open acquires access to a communications port. This function must be
called before any of the other API functions can be used.

comport specifies which port is to be opened. The valid values for the module are
COM1 (corresponds to PRT1), COM2 (corresponds to PRT2), and COM3
(corresponds to PRT3)..

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 194 of 239 ProSoft Technology, Inc.
 February 20, 2013

baudrate is the desired baud rate. The allowable values for baudrate are shown
in the following table.

Baud Rate Value

BAUD_110 0

BAUD_150 1

BAUD_300 2

BAUD_600 3

BAUD_1200 4

BAUD_2400 5

BAUD_4800 6

BAUD_9600 7

BAUD_19200 8

BAUD_28800 9

BAUD_38400 10

BAUD_57600 11

BAUD_115200 12

Valid values for parity are PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, and PARITY_SPACE.

wordlen sets the word length in number of bits per character. Valid values for
word length are WORDLEN5, WORDLEN6, WORDLEN7, and WORDLEN8.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

The handshake lines DTR and RTS of the port specified by comport are turned
on by MVIsp_Open.

Note: If the console is enabled or the Setup jumper is installed, the baud rate for COM1 is set as
configured in BIOS Setup and cannot be changed by MVIsp_Open. MVIsp_Open will return
MVI_SUCCESS, but the baud rate will not be affected. It is recommended that the console be
disabled in BIOS Setup if COM1 is to be accessed with the serial API.
IMPORTANT: After the API has been opened, MVIsp_Close should always be called before exiting
the application.Return Value

MVI_SUCCESS Port was opened successfully

MVI_ERR_REOPEN Port is already open

MVI_ERR_NODEVICE UART not found on port

Note: MVI_ERR_NODEVICE will be returned if the port is not supported by the module.

Example

if (MVIsp_Open(COM1,BAUD_9600,PARITY_NONE,WORDLEN8,STOPBITS1) !=

MVI_SUCCESS) {

 printf("Open failed!\n");

} else {

 printf("Open succeeded\n");

}

See Also

MVIsp_Close (page 197)

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 195 of 239
February 20, 2013

MVIsp_OpenAlt

Syntax

int MVIsp_ OpenAlt(int comport, MVISPALTSETUP *altsetup);

Parameters

comport Communications port to open

altsetup pointer to structure of type MVISPALTSETUP

Description

MVIsp_OpenAlt provides an alternate method to acquire access to a
communications port.

With MVIsp_OpenAlt, the sizes of the serial port data queues can be set by the
application.

See MVIsp_Open for any considerations about opening a port.

Comport specifies which port is to be opened. See MVIsp_Open for valid values.

Altsetup points to a MVISPALTSETUP structure that contains the configuration
information for the port.

The MVISPALTSETUP structure is defined as follows

typedef struct tagMVISPALTSETUP

{

BYTE baudrate;

BYTE parity;

BYTE wordlen;

BYTE stopbits;

int txquesize; /* Transmit queue size */

int rxquesize; /* Receive queue size */

BYTE fifosize; /* UART Internal FIFO size */

} MVISPALTSETUP;

See MVIsp_Open for valid values for the baudrate, parity, wordlen, and stopbits
members of the structure. The txquesize and rxquesize members determine the
size of the data buffers used to queue serial data. Valid values for the queue
sizes can be any value from MINQSIZE to MAXQSIZE. The MVIsp_Open
function uses a queue size of DEFQSIZE. These values are defined as:

#define MINQSIZE 512 /* Minimum Queue Size */

#define DEFQSIZE 1024 /* Default Queue Size */

#define MAXQSIZE 16384 /* Maximum Queue Size */

By default, the API sets the UART’s internal receive fifo size to 8 characters to
permit greater reliability at higher baud rates. In certain serial protocols, this
buffering of characters can cause character timeouts and can be changed or
disabled to meet these requirements. Most applications should set the fifosize to
the default RXFIFO_DEFAULT.

Either MVIsp_OpenAlt or MVIsp_Open must be called before any of the other
API functions can be used.

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 196 of 239 ProSoft Technology, Inc.
 February 20, 2013

Return Value

MVI_SUCCESS Port was opened successfully

MVI_ERR_REOPEN Port is already open

MVI_ERR_NODEVICE UART not found for port

Example

MVISPALTSETUP altsetup;

altsetup.baudrate = BAUD_9600;

altsetup.parity = PARITY_NONE;

altsetup.wordlen = WORDLEN8;

altsetup.stopbits = STOPBITS1;

altsetup.txquesize = DEFQSIZE;

altsetup.rxquesize = DEFQSIZE * 2;

if (MVIsp_OpenAlt(COM1, &altsetup) != MVI_SUCCESS)

{

printf("Open failed!\n");

} else {

printf("Open succeeded!\n");

}

See Also

MVIsp_Open (page 193)

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 197 of 239
February 20, 2013

MVIsp_Close

Syntax

int MVIsp_Close(int comport);

Parameters

comport Port to close

Description

This function is used by an application to release control of the a communications
port. comport must be previously opened with MVIsp_Open.

comport specifies which port is to be closed. The valid values for the module are
COM1 (corresponds to PRT1), COM2 (corresponds to PRT2), and COM3
(corresponds to PRT3).

The handshake lines DTR and RTS of the port specified by comport are turned
off by MVIsp_Close.

IMPORTANT: After the API has been opened, this function should always be called before exiting
the application.

Return Value

MVI_SUCCESS Port was closed successfully

MVI_ERR_NOACCESS Comport has not been opened

Example

MVIsp_Close(COM1);

See Also

MVIsp_Open (page 193)

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 198 of 239 ProSoft Technology, Inc.
 February 20, 2013

11.2 Serial Port API Configuration Functions

MVIsp_Config

Syntax

int MVIsp_Config(int comport, BYTE baudrate, BYTE parity,

BYTE wordlen, BYTE stopbits);

Parameters

comport Communications port to open

baudrate Baud rate for this port

parity Parity setting for this port

wordlen Number of bits for each character

stopbits Number of stop bits for each character

baudrate Pointer to DWORD to receive baudrate

Description

MVIsp_Config allows the configuration of a serial port to be changed after it has
been opened.

comport specifies which port is to be opened.

baudrate is the desired baud rate.

Valid values for parity are PARITY_NONE, PARITY_ODD, PARITY_EVEN,
PARITY_MARK, and PARITY_SPACE.

wordlen sets the word length in number of bits per character. Valid values for
word length are WORDLEN5, WORDLEN6, WORDLEN7, and WORDLEN8.

The number of stop bits is set by stopbits. Valid values for stop bits are
STOPBITS1 and STOPBITS2.

Note: If the console is enabled or the Setup jumper is installed, the baud rate for COM1 is set as
configured in BIOS Setup and cannot be changed by MVIsp_Open. MVIsp_Config will return
MVI_SUCCESS, but the baud rate will not be affected.

Return Value

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS Comport has not been opened

MVI_ERR_BADPARAM Invalid pointer

Example

if (MVIsp_Config(COM1,BAUD_9600,PARITY_NONE,WORDLEN8,STOPBITS1) !=

MVI_SUCCESS) {

 printf("Config failed!\n");

} else {

 printf("Config succeeded\n");

}

See Also

MVIsp_Open (page 193)

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 199 of 239
February 20, 2013

MVIsp_SetHandshaking

Syntax

int MVIsp_SetHandshaking(int comport, int shake);

Parameters

comport Port for which handshaking is to be set

shake Desired handshake mode

Description

This function enables handshaking for a port after it has been opened. comport
must be previously opened with MVIsp_Open.

shake is the desired handshake mode. Valid values for shake are
HSHAKE_NONE, HSHAKE_XONXOFF, HSHAKE_RTSCTS, and
HSHAKE_DTRDSR.

Use HSHAKE_XONXOFF to enable software handshaking for a port. Use
HSHAKE_RTSCTS or HSHAKE_DTRDSR to enable hardware handshaking for
a port. Hardware and software handshaking cannot be used together.

Handshaking is supported in both the transmit and receive directions.

Important: If hardware handshaking is enabled, using the MVIsp_SetRTS and MVIsp_SetDTR
functions will cause unpredictable results.
If software handshaking is enabled, ensure that the XON and XOFF ASCII characters are not
transmitted as data from a port or received into a port because this will be treated as handshaking
controls.

Return Values

MVI_SUCCESS No errors were encountered

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid handshaking mode

Example

if (MVI_SUCCESS != MVIsp_SetHandshaking(COM1, HSHAKE_RTSCTS))

 printf("Error: Set Handshaking failed\n");

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 200 of 239 ProSoft Technology, Inc.
 February 20, 2013

11.3 Serial Port API Status Functions

MVIsp_SetRTS

Syntax

int MVIsp_SetRTS(int comport, int state);

Parameters

comport Port for which RTS is to be changed

state Desired RTS state

Description

This functions allows the state of the RTS signal to be controlled. comport must
be previously opened with MVIsp_Open.

state specifies desired state of the RTS signal. Valid values for state are ON and
OFF.

Note: If RTS/CTS hardware handshaking is enabled, using the MVIsp_SetRTS function will cause
unpredictable results.

Return Value

MVI_SUCCESS The RTS signal was set successfully.

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid state

Example

int rc;

rc = MVIsp_SetRTS(COM1, ON);

if (rc != MVI_SUCCESS)

 printf("SetRTS failed\n ");

See Also

MVIsp_GetRTS (page 201)

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 201 of 239
February 20, 2013

MVIsp_GetRTS

Syntax

int MVIsp_GetRTS(int comport, int *state);

Parameters

comport Port for which RTS is requested

state Pointer to int for desired state

Description

This function allows the state of the RTS signal to be determined. comport must
be previously opened with MVIsp_Open.

The current state of the RTS signal is copied to the int pointed to by state.

Return Value

MVI_SUCCESS The RTS state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid pointer

Example

int state;

if (MVIsp_GetRTS(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

 printf("RTS is ON\n");

 else

 printf("RTS is OFF\n");

}

See Also

MVIsp_SetRTS (page 200)

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 202 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIsp_SetDTR

Syntax

int MVIsp_SetDTR(int comport, int state);

Parameters

comport Port for which DTR is to be changed

state Desired state

Description

This function allows the state of the DTR signal to be controlled. comport must be
previously opened with MVIsp_Open.

state is the desired state of the DTR signal. Valid values for state are ON and
OFF.

Note: If DTR/DSR handshaking is enabled, changing the state of the DTR signal with
MVIsp_SetDTR will cause unpredictable results.

Return Value

MVI_SUCCESS The DTR signal was set successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid state

Example

if (MVIsp_SetDTR(COM1, ON) != MVI_SUCCESS)

printf("Set DTR failed\n");

See Also

MVIsp_GetDTR (page 203)

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 203 of 239
February 20, 2013

MVIsp_GetDTR

Syntax

int MVIsp_GetDTR(int comport, int *state);

Parameters

comport Port for which DTR is requested

state Pointer to int for desired state

Description

This function allows the state of the DTR signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DTR signal is
copied to the int pointed to by state.

Return Values

MVI_SUCCESS The DTR state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid pointer

Example

int state;

if (MVIsp_GetDTR(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

 printf("DTR is ON\n");

 else

 printf("DTR is OFF\n");

}

See Also

MVIsp_SetDTR (page 202)

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 204 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIsp_GetCTS

Syntax

int MVIsp_GetCTS(int comport, int *state);

Parameters

comport Port for which CTS is requested

state Pointer to int for desired state

Description

This function allows the state of the CTS signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the CTS signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS The CTS state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid pointer

Example

int state;

if (MVIsp_GetCTS(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

 printf("CTS is ON\n");

 else

 printf("CTS is OFF\n");

}

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 205 of 239
February 20, 2013

MVIsp_GetDSR

Syntax

int MVIsp_GetDSR(int comport, int *state);

Parameters

comport Port for which DSR is requested

state Pointer to int for desired state

Description

This function allows the state of the DSR signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DSR signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS The DSR state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid pointer

Example

int state;

if (MVIsp_GetDSR(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

 printf("DSR is ON\n");

 else

 printf("DSR is OFF\n");

}

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 206 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIsp_GetDCD

Syntax

int MVIsp_GetDCD(int comport, int *state);

Parameters

comport Port for which DCD is requested

state Pointer to int for desired state

Description

This function allows the state of the DCD signal to be determined. comport must
be previously opened with MVIsp_Open. The current state of the DCD signal is
copied to the int pointed to by state.

Return Value

MVI_SUCCESS The DCD state was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid pointer

Example

int state;

if (MVIsp_GetDCD(COM1, &state) == MVI_SUCCESS)

{

 if (state == ON)

 printf("DCD is ON\n");

 else

 printf("DCD is OFF\n");

}

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 207 of 239
February 20, 2013

MVIsp_GetLineStatus

Syntax

int MVIsp_GetLineStatus(int comport, BYTE *status);

Parameters

comport Port for which line status is requested

status Pointer to BYTE to receive line status

Description

MVIsp_GetLineStatus returns any line status errors received over the serial port.
The status returned indicates if any overrun, parity, or framing errors or break
signals have been detected.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

status points to a BYTE that will receive a set of flags that indicate errors
received over the serial port. If the returned status is 0, no errors have been
detected. If status is non-zero, it can be logically and'ed with the line status error
flags LSERR_OVERRUN, LSERR_PARITY, LSERR_FRAMING,
LSERR_BREAK, and/or QSERR_OVERRUN to determine the exact cause of the
error. The corresponding error flag will be set for each error type detected.

Note: The QSERR_OVERRUN bit indicates that a receive queue overflow has occurred.

After returning the bit flags in status, line status errors are cleared. Therefore,
MVIsp_GetLineStatus actually returns line status errors detected since the
previous call to this function.

Return Value

MVI_SUCCESS The line status was read successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid pointer

Example

BYTE sts;

if (MVIsp_GetGetLineStatus(COM2,&sts) == MVI_SUCCESS)

{

 if (sts == 0)

 printf("No Line Status Errors Received\n");

 else if ((sts & LSERR_BREAK) != 0)

 printf("A Break Signal was Received\n");

 else

 printf("A Line Status Error was Received\n");

}

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 208 of 239 ProSoft Technology, Inc.
 February 20, 2013

11.4 Serial Port API Communications

MVIsp_Putch

Syntax

int MVIsp_Putch(int comport, BYTE ch, DWORD timeout);

Parameters

comport Port to which data is to be sent

ch Character to be sent

timeout Amount of time to wait to send character

Description

This function is used to transmit a single character across a serial port. comport
must be previously opened with MVIsp_Open.

ch is the byte to be sent.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time after this function returns
and the actual time that the character is transmitted across the serial line. This
function attempts to insert the character into the transmission queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the character cannot be
queued immediately. If timeout is TIMEOUT_FOREVER, the function will not
return until the character is queued successfully.

If the character can be queued immediately, MVIsp_Putch returns
MVI_SUCCESS. If the character cannot be queued immediately, MVIsp_Putch
tries to queue the character until the timeout elapses. If the timeout elapses
before the character can be queued, MVI_ERR_TIMEOUT is returned.

Note: If handshaking is enabled and the receiving serial device has paused transmission, timeouts
may occur after the queue becomes full.

Return Value

MVI_SUCCESS The char was sent successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid parameter

MVI_ERR_TIMEOUT Timeout elapsed before character sent

Example

if (MVIsp_Putch(COM1, ';', 1000L) != MVI_SUCCESS)

 printf("Semicolon could not be sent in 1 second\n");

See Also

MVIsp_GetCh (page 209)

MVIsp_Puts (page 210)

MVIsp_PutData (page 212)

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 209 of 239
February 20, 2013

MVIsp_Getch

Syntax

int MVIsp_Getch(int comport, BYTE *ch, DWORD timeout);

Parameters

comport Port from which data is to be received

ch Pointer to BYTE to receive character

timeout Amount of time to wait to receive character

Description

This function receives a single character from a serial port. comport must be
previously opened with MVIsp_Open.

ch points to a BYTE that will receive the character.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_Getch.
This function attempts to retrieve a character from the reception queue, and
return values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until a character is
retrieved from the reception queue successfully.

If the reception queue is not empty, the oldest character is retrieved from the
queue and MVIsp_Getch returns MVI_SUCCESS. If the queue is empty,
MVIsp_Getch tries to retrieve a character from the queue until the timeout
elapses. If the timeout elapses before a character can be retrieved,
MVI_ERR_TIMEOUT is returned.

Return Value

MVI_SUCCESS A char was retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid pointer

MVI_ERR_TIMEOUT Timeout elapsed before character retrieved

Example

BYTE ch;

if (MVIsp_Getch(COM1, &ch, 1000L) == MVI_SUCCESS)

 putch((char)ch);

See Also

MVIsp_PutCh (page 208)

MVIsp_Gets (page 214)

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 210 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIsp_Puts

Syntax

int MVIsp_Puts(int comport, BYTE *str, BYTE term, int *len, DWORD timeout);

Parameters

comport Port to which data is to be sent

str String of characters to be sent

term Termination character of string

len Pointer to BYTE to receive number of characters sent

timeout Amount of time to wait to send character

Description

This function is used to transmit a string of characters across a serial port.
comport must be previously opened with MVIsp_Open.

str is a pointer to an array of characters (or is a string) to be sent.

MVIsp_Puts sends each char in the array str to the serial port until it encounters
the termination character term. Therefore, the character array must end with the
termination character. The termination character is not sent to the serial port.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time this function returns and the
actual time that the characters are transmitted across the serial line. This function
attempts to insert the characters into the transmission queue, and return values
correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if any of the characters
cannot be queued immediately. If timeout is TIMEOUT_FOREVER, the function
will not return until all the characters are queued successfully.

If all the characters can be queued immediately, MVIsp_Puts returns
MVI_SUCCESS. If the characters cannot be queued immediately, MVIsp_Puts
tries to queue the characters until the timeout elapses. If the timeout elapses
before the characters can be queued, MVI_ERR_TIMEOUT is returned.

If len is not NULL, MVIsp_Puts writes to the int pointed to by len the number of
characters queued successfully. len is written for successfully sent characters as
well as timeouts.

Note: If handshaking is enabled and the receiving serial device has paused transmission, timeouts
may occur after the queue becomes full.

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 211 of 239
February 20, 2013

Return Value

MVI_SUCCESS The characters were sent successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid parameter

MVI_ERR_TIMEOUT Timeout elapsed before characters sent

Example

char str[] = "Hello, World!";

int nn;

if (MVIsp_Puts(COM1, str, '\0', &nn, 1000L) != MVI_SUCCESS)

 printf("%d characters were sent\n",nn);

See Also

MVIsp_Gets (page 214)

MVIsp_PutCh (page 208)

MVIsp_PutData (page 212)

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 212 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIsp_PutData

Syntax

int MVIsp_PutData(int comport, BYTE *data, int *len, DWORD timeout);

Parameters

comport Port to which data is to be sent

data Pointer to array of bytes to be sent

len Pointer to number of bytes to send / bytes sent

timeout Amount of time to wait to send byte

Description

This function is used to transmit an array of bytes across a serial port. comport
must be previously opened with MVIsp_Open.

data is a pointer to an array of bytes to be sent.

MVIsp_PutData sends each byte in the array data to the serial port. len should
point to the number of bytes in the array data to be sent.

All data sent to a port is queued before transmission across the serial port.
Therefore, some delay may occur between the time this function returns and the
actual time that the bytes are transmitted across the serial line. This function
attempts to insert the bytes into the transmission queue, and return values
correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if any of the bytes cannot
be queued immediately. If timeout is TIMEOUT_FOREVER, the function will not
return until all the bytes are queued successfully.

If all the bytes can be queued immediately, MVIsp_PutData returns
MVI_SUCCESS. If the characters cannot be queued immediately,
MVIsp_PutData tries to queue the bytes until the timeout elapses. If the timeout
elapses before the bytes can be queued, MVI_ERR_TIMEOUT is returned.

When MVIsp_PutData returns, it writes to the int pointed to by len the number of
bytes queued successfully. len is written for successfully sent bytes as well as
timeouts.

Note: If software handshaking is enabled on the external serial device, sending data that contains
XOFF characters may stop transmission from the external serial device.

If handshaking is enabled and the receiving serial device has paused
transmission, timeouts may occur after the queue becomes full.

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 213 of 239
February 20, 2013

Return Value

MVI_SUCCESS The bytes were sent successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid parameter

MVI_ERR_TIMEOUT Timeout elapsed before bytes sent

Example

BYTE dd[5] = { 10, 20, 30, 40, 50 };

int nn;

nn = 5;

if (MVIsp_PutData(COM1, &dd[0], &nn, 1000L) != MVI_SUCCESS)

 printf("%d bytes were sent\n",nn);

See Also

MVIsp_PutCh (page 208)

MVIsp_Puts (page 210)

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 214 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIsp_Gets

Syntax

int MVIsp_Gets(int comport, BYTE *str, BYTE term, int *len, DWORD timeout);

Parameters

comport Port from which data is to be received

str Pointer to array of bytes to receive data

term Termination character of data

len Number of bytes to receive / bytes received

timeout Amount of time to wait to receive character

Description

This function receives an array of bytes from a serial port. comport must be
previously opened with MVIsp_Open.

str points to an array of bytes that will receive the data.

len points to the number of bytes to receive.

MVIsp_Gets retrieves bytes from the reception queue until either a byte is equal
to the termination character or the number of bytes pointed to by len are
retrieved. If a byte is retrieved that equals the termination character, the byte is
copied into the array str and the function returns.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_Gets. This
function attempts to retrieve characters from the reception queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until an array of
bytes is retrieved from the reception queue successfully.

If the timeout elapses before the termination character or len bytes are received,
MVI_ERR_TIMEOUT is returned.

When MVIsp_Gets returns, it writes to the int pointed to by len the number of
bytes retrieved. len is written for successfully retrieved bytes as well as timeouts.
If the function returns because a termination character was retrieved, len
includes the termination character in the length.

Note: If handshaking is enabled and the reception queue is full, this API may pause transmissions
from the external device, and timeouts may then occur.

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 215 of 239
February 20, 2013

Return Value

MVI_SUCCESS Bytes were retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid pointer

MVI_ERR_TIMEOUT Timeout elapsed before bytes retrieved

Example

BYTE str[10];

int nn;

nn = 10;

if (MVIsp_Gets(COM1, &str[0], '\r', &nn, 1000L) == MVI_SUCCESS)

 printf("%d bytes were received\n",nn);

See Also

MVIsp_Getch (page 209)

MVIsp_Puts (page 210)

MVIsp_PutData (page 212)

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 216 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIsp_GetData

Syntax

int MVIsp_GetData(int comport, BYTE *data, int *len, DWORD timeout);

Parameters

comport Port from which data is to be received

data Pointer to array of bytes to receive data

len Number of bytes to receive / bytes received

timeout Amount of time to wait to receive character

Description

This function receives an array of bytes from a serial port. comport must be
previously opened with MVIsp_Open.

data points to an array of bytes that will receive the data.

len points to the number of bytes to receive.

MVIsp_GetData retrieves bytes from the reception queue until either the number
of bytes pointed to by len are retrieved or the timeout elapses.

All data received from a port is queued after reception from the serial port.
Therefore, some delay may occur between the time a character is received
across the serial line and the time the character is returned by MVIsp_GetData.
This function attempts to retrieve characters from the reception queue, and return
values correspond accordingly.

timeout specifies the amount of time in milliseconds to wait. If timeout is
TIMEOUT_ASAP, the function will return immediately if the queue is empty. If
timeout is TIMEOUT_FOREVER, the function will not return until an array of
bytes is retrieved from the reception queue successfully.

If the timeout elapses before the termination character or len bytes are received,
MVI_ERR_TIMEOUT is returned.

When MVIsp_GetData returns, it writes to the int pointed to by len the number of
bytes retrieved. len is written for successfully retrieved bytes as well as timeouts.

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 217 of 239
February 20, 2013

Return Value

MVI_SUCCESS bytes were retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM invalid pointer

MVI_ERR_TIMEOUT timeout elapsed before bytes retrieved

Example

BYTE data[10];

int nn;

nn = 10;

if (MVIsp_GetData(COM1, data, &nn, 1000L) == MVI_SUCCESS)

 printf("%d bytes were received\n",nn);

See Also

MVIsp_Gets (page 214)

MVIsp_Getch (page 209)

MVIsp_PutData (page 212)

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 218 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIsp_GetCountUnsent

Syntax

int MVIsp_GetCountUnsent(int comport, int *count);

Parameters

comport Desired communications port

count Pointer to int to receive unsent character count

Description

MVIsp_GetCountUnsent returns the number of characters in the transmit queue
that are waiting to be sent. Since data sent to a port is queued before
transmission across a serial port, the application may need to determine if all
characters have been transmitted or how many characters remain to be
transmitted.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that have been
sent to the serial port but not transmitted. If the returned count is 0, all data has
been transmitted. If it is non-zero, it contains the number of characters put into
the queue with MVIsp_Putch, MVIsp_Puts, or MVIsp_PutData but that have not
been transmitted.

Return Value

MVI_SUCCESS Count retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid pointer

Example

int count;

if (MVIsp_GetCountUnsent(COM2,&count) == MVI_SUCCESS)

{

 if (count == 0)

 printf("All chars sent\n");

 else

 printf("%d characters remaining\n",count);

}

See Also

MVIsp_Putch (page 208)

MVIsp_Puts (page 210)

MVIsp_PutData (page 212)

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 219 of 239
February 20, 2013

MVIsp_GetCountUnread

Syntax

int MVIsp_GetCountUnread(int comport, int *count);

Parameters

comport Desired communications port

count Pointer to int to receive unread character count

Description

MVIsp_GetCountUnread returns the number of characters in the receive queue
that are waiting to be read. Since data received from a port is queued after
reception from a serial port, the application may need to determine if all
characters have been read or how many characters remain to be read.

comport is the desired serial port and must be previously opened with
MVIsp_Open.

count points to an int that will receive the number of characters that have been
received from the serial port but not read by the application. If the returned count
is 0, all received data has been read. If it is non-zero, it contains the number of
characters placed into the receive queue after reception from a serial port but
that have not been read from the queue with MVIsp_Getch, MVIsp_Gets, or
MVIsp_GetData.

Return Value

MVI_SUCCESS Count retrieved successfully

MVI_ERR_NOACCESS comport has not been opened

MVI_ERR_BADPARAM Invalid pointer

Example

int count;

if (MVIsp_GetCountUnread(COM2,&count) == MVI_SUCCESS)

{

 if (count == 0)

 printf("All chars read\n");

 else

 printf("%d characters remaining\n",count);

}

See Also

MVIsp_Getch (page 209)

MVIsp_Gets (page 214)

MVIsp_GetData (page 216)

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 220 of 239 ProSoft Technology, Inc.
 February 20, 2013

MVIsp_PurgeDataUnsent

Syntax

int MVIsp_PurgeDataUnsent(int comport);

Parameters

comport Port whose transmit data is to be purged

Description

MVIsp_PurgeDataUnsent deletes all data waiting in the transmit queue. The data
is discarded

and is not transmitted.

Comport specifies the port whose transmit queue is to be purged.

Return Value

MVI_SUCCESS The data was purged successfully

MVI_ERR_BADPARAM invalid comport

MVI_ERR_NOACCESS The comport has not been opened

Example

if (MVIsp_PurgeDataUnsent(COM1) == MVI_SUCCESS)

printf("Transmit Data purged.\n");

See Also

MVIsp_PurgeDataUnread (page 221)

PTQ-ADM ♦ 'C' Programmable Serial Port Library Functions
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 221 of 239
February 20, 2013

MVIsp_PurgeDataUnread

Syntax

int MVIsp_PurgeDataUnread(int comport)

Parameters

comport Port whose receive data is to be purged

Description

MVIsp_PurgeDataUnread deletes all data waiting in the receive queue. The data
is discarded and is no longer available for reading.

Note: If handshaking is enabled and the transmitting serial device has been paused, this function
will release the transmitting serial device to resume transmission.

Return Value

MVI_SUCCESS The data was purged successfully

MVI_ERR_BADPARAM invalid comport

MVI_ERR_NOACCESS The comport has not been opened

Example

if (MVIsp_PurgeDataUnread(COM1) == MVI_SUCCESS)

printf("Transmit Data purged.\n");

See Also

MVIsp_PurgeDataUnsent (page 220)

Serial Port Library Functions PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 222 of 239 ProSoft Technology, Inc.
 February 20, 2013

11.5 Serial Port API Miscellaneous Functions

MVIsp_GetVersionInfo

Syntax

int MVIsp_GetVersionInfo(MVISPVERSIONINFO *verinfo);

Parameters

verinfo Pointer to structure of type MVISPVERSIONINFO

Description

MVIsp_GetVersionInfo Retrieves the current version of the API. The version
information is returned in the structure verinfo.

The MVISPVERSIONINFO structure is defined as follows:

typedef struct tagMVISPVERSIONINFO

{

 WORD APISeries; /* API series */

 WORD APIRevision; /* API revision */

} MVISPVERSIONINFO;

Return Value

MVI_SUCCESS The version information was read successfully.

Example

MVISPVERSIONINFO verinfo;

/* print version of API library */

MVIsp_GetVersionInfo(&verinfo);

printf("Library Series %d, Rev %d\n", verinfo.APISeries,

verinfo.APIRevision);

PTQ-ADM ♦ 'C' Programmable Product Specifications
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 223 of 239
February 20, 2013

12 Product Specifications

In This Chapter

 General Specifications... 224
 Hardware Specifications .. 225
 Functional Specifications ... 226

The PTQ Application Development Module is an backplane compatible module
that allows user-developed 'C' applications to operate on the platform. A great
way to speed up custom ASCII data communications or to protect a proprietary
algorithm, the ADM is a powerful tool for the platform.

Powerful platform for developing and running 'C' applications on Schneider
Electric’s processors. The PTQ-ADM module is a single slot, backplane
compatible solution for the platform. This module is a powerful and
programmable solution supporting two fully isolated serial ports allowing the
many serial field devices to be integrated into the platform.

The PTQ-ADM module has three serial ports, two of which are isolated for field
interfaces:

 CFG: Debug/configuration RS-232
 PRT1: Application RS-232, RS-422 or RS-485
 PRT2: Application RS-232, RS-422 or RS-485

PRT1 and PRT2 are jumper configured for direct or multi-drop field
communication. The application program can be written to control the two
application ports independently, allowing maximum flexibility in the design.

Product Specifications PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 224 of 239 ProSoft Technology, Inc.
 February 20, 2013

12.1 General Specifications

 Single Slot - Quantum backplane compatible
 The module is recognized as an Options module and has access to PLC

memory for data transfer
 Configuration data is stored in non-volatile memory in the ProTalk module
 Up to six modules can be placed in a rack
 Local rack - The module must be placed in the same rack as processor
 Compatible with all common Quantum programming packages, including

Concept (version 2.6 or higher), Unity Pro (version 2.2 or higher), ProWORX
(version 2.20 or later), and ModSoft

 Quantum data types supported: 3x, 4x
 High speed data transfer across backplane provides quick data update times
 Sample ladder file available

PTQ-ADM ♦ 'C' Programmable Product Specifications
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 225 of 239
February 20, 2013

12.2 Hardware Specifications

Specification Value

Backplane Current Load 1100 mA maximum @ 5 Vdc ± 5%

Operating Temperature 0°C to 60°C (32°F to 140°F)

Storage Temperature -40°C to 85°C (-40°F to 185°F)

Relative Humidity 5% to 95% (without condensation)

Vibration Sine vibration 4-100 Hz in each of
the 3 orthogonal axes

Shock 30G, 11 mSec. in each of the 3
orthogonal axes

Dimensions (HxWxD),
Approx.

250 x 103.85 x 40.34 mm
9.84 x 4.09 x 1.59 in

LED Indicators Module Status
Backplane Transfer Status
Serial Port Activity LED
Serial Activity and Error LED Status

Configuration Serial Port
(PRT1)

DB-9M PC Compatible
RS-232 only
No hardware handshaking

Application Serial Ports (PRT2, PRT3)
DB-9M PC Compatible
RS-232/422/485 jumper selectable
RS-422/485 screw termination
included
RS-232 handshaking configurable
500V Optical isolation from
backplane

Product Specifications PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 226 of 239 ProSoft Technology, Inc.
 February 20, 2013

12.3 Functional Specifications

The PTQ ADM API Suite allows software developers to access the Quantum
backplane and serial ports without needing detailed knowledge of the module’s
hardware design.

Serial Port API Functions

The serial port API provides a common interface to the serial ports across all of
the PTQ hardware platforms. Functions include configuring, opening, closing,
controlling and monitoring the serial port, and sending and receiving serial data

Backplane API Functions

The backplane API provides an interface to transfer data between the module
and the processor over the backplane. Functions include initialization,
configuration, direct I/O access, synchronization, messaging, and control of the
console and LEDs.

ADM API Functions

The ADM API provides an interface to initialize the API, control the debug port,
read and write data to the database, start and check timers, transfer data over
the backplane, parse configuration files, set user LED indicators, and configure
the console.

Module Specifications

Module

 User-definable module memory usage, supporting the storage and transfer of
up to 5000 registers to/from the control processor

 Floating-point data movement support

Development Environment

 Operating system: General software DOS 6-XL
 Compatible compilers (16-bit DOS target)

o Digital Mars C++ V8.49 (included)
o Borland C++ V5.02

PTQ-ADM ♦ 'C' Programmable DOS 6 XL Reference Manual
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 227 of 239
February 20, 2013

13 DOS 6 XL Reference Manual

The DOS 6 XL Reference Manual makes reference to compilers other than
Digital Mars C++ or Borland Compilers. The PTQ-ADM and ADMNET modules
only support Digital Mars C++ and Borland C/C++ Compiler Version 5.02.
References to other compilers should be ignored.

DOS 6 XL Reference Manual PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 228 of 239 ProSoft Technology, Inc.
 February 20, 2013

PTQ-ADM ♦ 'C' Programmable Support, Service & Warranty
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 229 of 239
February 20, 2013

14 Support, Service & Warranty

In This Chapter

 Contacting Technical Support ... 230
 Warranty Information ... 231

Support, Service & Warranty PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 230 of 239 ProSoft Technology, Inc.
 February 20, 2013

14.1 Contacting Technical Support

 ProSoft Technology, Inc. (ProSoft) is committed to providing the most efficient
and effective support possible. Before calling, please gather the following
information to assist in expediting this process:

1 Product Version Number
2 System architecture
3 Network details

If the issue is hardware related, we will also need information regarding:

1 Module configuration and associated ladder files, if any
2 Module operation and any unusual behavior
3 Configuration/Debug status information
4 LED patterns
5 Details about the serial, Ethernet or fieldbus devices interfaced to the module,

if any.

Note: For technical support calls within the United States, an after-hours answering system allows
24-hour/7-days-a-week pager access to one of our qualified Technical and/or Application Support
Engineers. Detailed contact information for all our worldwide locations is available on the following
page.

PTQ-ADM ♦ 'C' Programmable Support, Service & Warranty
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 231 of 239
February 20, 2013

Internet Web Site: www.prosoft-technology.com/support
E-mail address: support@prosoft-technology.com

Asia Pacific

(location in Malaysia)

Tel: +603.7724.2080, E-mail: asiapc@prosoft-technology.com
Languages spoken include: Chinese, English

Asia Pacific

(location in China)

Tel: +86.21.5187.7337 x888, E-mail: asiapc@prosoft-technology.com
Languages spoken include: Chinese, English

Europe

(location in Toulouse,
France)

Tel: +33 (0) 5.34.36.87.20,
E-mail: support.EMEA@prosoft-technology.com
Languages spoken include: French, English

Europe

(location in Dubai, UAE)

Tel: +971-4-214-6911,
E-mail: mea@prosoft-technology.com
Languages spoken include: English, Hindi

North America

(location in California)

Tel: +1.661.716.5100,
E-mail: support@prosoft-technology.com
Languages spoken include: English, Spanish

Latin America

(Oficina Regional)

Tel: +1-281-2989109,
E-Mail: latinam@prosoft-technology.com
Languages spoken include: Spanish, English

Latin America

(location in Puebla, Mexico)
Tel: +52-222-3-99-6565,
E-mail: soporte@prosoft-technology.com
Languages spoken include: Spanish

Brasil

(location in Sao Paulo)

Tel: +55-11-5083-3776,
E-mail: brasil@prosoft-technology.com
Languages spoken include: Portuguese, English

14.2 Warranty Information

Complete details regarding ProSoft Technology’s TERMS AND CONDITIONS
OF SALE, WARRANTY, SUPPORT, SERVICE AND RETURN MATERIAL
AUTHORIZATION INSTRUCTIONS can be found at www.prosoft-
technology.com/warranty.

Documentation is subject to change without notice.

http://www.prosoft-technology.com/warranty
http://www.prosoft-technology.com/warranty

Support, Service & Warranty PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 232 of 239 ProSoft Technology, Inc.
 February 20, 2013

PTQ-ADM ♦ 'C' Programmable Glossary of Terms
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 233 of 239
February 20, 2013

Glossary of Terms

A

API

Application Program Interface

B

Backplane

Refers to the electrical interface, or bus, to which modules connect when inserted
into the rack. The module communicates with the control processor(s) through
the processor backplane.

BIOS

Basic Input Output System. The BIOS firmware initializes the module at power
up, performs self-diagnostics, and provides a DOS-compatible interface to the
console and Flashes the ROM disk.

Byte

8-bit value

C

CIP

Control and Information Protocol. This is the messaging protocol used for
communications over the ControlLogix backplane. Refer to the ControlNet
Specification for information.

Connection

A logical binding between two objects. A connection allows more efficient use of
bandwidth, because the message path is not included after the connection is
established.

Consumer

A destination for data.

Controller

The PLC or other controlling processor that communicates with the module
directly over the backplane or via a network or remote I/O adapter.

D

DLL

Dynamic Linked Library

Glossary of Terms PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 234 of 239 ProSoft Technology, Inc.
 February 20, 2013

E

Embedded I/O

Refers to any I/O which may reside on a CAM board.

ExplicitMsg

An asynchronous message sent for information purposes to a node from the
scanner.

H

HSC

High Speed Counter

I

Input Image

Refers to a contiguous block of data that is written by the module application and
read by the controller. The input image is read by the controller once each scan.
Also referred to as the input file.

L

Library

Refers to the library file containing the API functions. The library must be linked
with the developer’s application code to create the final executable program.

Linked Library

Dynamically Linked Library. See Library.

Local I/O

Refers to any I/O contained on the CPC base unit or mezzanine board.

Long

32-bit value.

M

Module

Refers to a module attached to the backplane.

Mutex

A system object which is used to provide mutually-exclusive access to a
resource.

MVI Suite

The MVI suite consists of line products for the following platforms:

 Flex I/O
 ControlLogix
 SLC
 PLC

PTQ-ADM ♦ 'C' Programmable Glossary of Terms
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 235 of 239
February 20, 2013

 CompactLogix

MVI46

MVI46 is sold by ProSoft Technology under the MVI46-ADM product name.

MVI56

MVI56 is sold by ProSoft Technology under the MVI56-ADM product name.

MVI69

MVI69 is sold by ProSoft Technology under the MVI69-ADM product name.

MVI71

MVI71 is sold by ProSoft Technology under the MVI71-ADM product name.

MVI94

MVI94 and MVI94AV are the same modules. The MVI94AV is now sold by
ProSoft Technology under the MVI94-ADM product name

O

Originator

A client that establishes a connection path to a target.

Output Image

Table of output data sent to nodes on the network.

P

Producer

A source of data.

PTO

Pulse Train Output

PTQ Suite

The PTQ suite consists of line products for Schneider Electronics platforms:

Quantum (ProTalk)

S

Scanner

A DeviceNet node that scans nodes on the network to update outputs and inputs.

Side-connect

Refers to the electronic interface or connector on the side of the PLC-5, to which
modules connect directly through the PLC using a connector that provides a fast
communication path between the - module and the PLC-5.

Glossary of Terms PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 236 of 239 ProSoft Technology, Inc.
 February 20, 2013

T

Target

The end-node to which a connection is established by an originator.

Thread

Code that is executed within a process. A process may contain multiple threads.

W

Word

16-bit value

PTQ-ADM ♦ 'C' Programmable Index
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 237 of 239
February 20, 2013

Index

A

Add the PTQ Module to the Project • 20, 38
ADM API • 58
ADM API Architecture • 58
ADM API Backplane Functions • 146
ADM API Clock Functions • 144
ADM API Database Functions • 109
ADM API Debug Port Functions • 102
ADM API Functions • 98
ADM API Initialization Functions • 100
ADM API Miscellaneous Functions • 154
ADM API RAM Functions • 157
ADM LED Functions • 153
ADM_BtClose • 146, 147
ADM_BtFunc • 150
ADM_BtNext • 148
ADM_BtOpen • 146, 147, 148, 149, 150
ADM_CheckDBPort • 108
ADM_CheckTimer • 144, 145
ADM_Close • 100, 101
ADM_ConPrint • 107
ADM_DAWriteRecvCtl • 103, 104
ADM_DAWriteRecvData • 105, 106
ADM_DAWriteSendCtl • 103, 104
ADM_DAWriteSendData • 105, 106
ADM_DBAND_Byte • 140
ADM_DBBitChanged • 137
ADM_DBChanged • 136
ADM_DBClearBit • 113, 114
ADM_DBClose • 109, 110
ADM_DBGetBit • 112
ADM_DBGetBuff • 125, 126
ADM_DBGetByte • 115, 116
ADM_DBGetDFloat • 123, 124
ADM_DBGetFloat • 121, 122
ADM_DBGetLong • 119, 120
ADM_DBGetRegs • 127, 128
ADM_DBGetString • 129, 130
ADM_DBGetWord • 117, 118
ADM_DBNAND_Byte • 141
ADM_DBNOR_Byte • 139
ADM_DBOpen • 109, 110, 111
ADM_DBOR_Byte • 138
ADM_DBSetBit • 113, 114
ADM_DBSetBuff • 125, 126
ADM_DBSetByte • 115, 116
ADM_DBSetDFloat • 123, 124
ADM_DBSetFloat • 121, 122
ADM_DBSetLong • 119, 120
ADM_DBSetRegs • 127, 128
ADM_DBSetString • 129, 130
ADM_DBSetWord • 117, 118
ADM_DBSwapDWord • 132

ADM_DBSwapWord • 131
ADM_DBXNOR_Byte • 143
ADM_DBXOR_Byte • 142
ADM_DBZero • 111
ADM_Get_BP_Data_Exchange • 163
ADM_GetDBCptr • 133
ADM_GetDBInt • 135
ADM_GetDBIptr • 134
ADM_GetVersionInfo • 154
ADM_Open • 100, 101
ADM_ProcessDebug • 102
ADM_RAM_GetChar • 162
ADM_RAM_GetDouble • 161
ADM_RAM_GetFloat • 160
ADM_RAM_GetInt • 158
ADM_RAM_GetLong • 159
ADM_RAM_GetString • 157
ADM_ReadBtCfg • 149
ADM_SetBtStatus • 151, 152
ADM_SetConsolePort • 155, 156
ADM_SetConsoleSpeed • 155, 156
ADM_SetLed • 153
ADM_SetStatus • 151, 152
ADM_StartTimer • 144, 145
API • 233
API Libraries • 56
Application Development Libraries • 97

B

Backplane • 233
Backplane API Configuration Functions • 169
Backplane API Direct I/O Access • 175
Backplane API Functions • 165
Backplane API Initialization Functions • 167
Backplane API Messaging Functions • 177
Backplane API Miscellaneous Functions • 181
Backplane API Synchronization Functions • 173
BIOS • 233
Build the Project • 40
Building an Existing Borland C++ 5.02 ADM Project •

75
Building an Existing Digital Mars C++ 8.49 ADM

Project • 64
Byte • 233

C

Cable Connections • 48
Calling Convention • 56
CIP • 233
Configuring Borland C++5.02 • 74
Configuring Digital Mars C++ 8.49 • 64
Configuring the Processor with Concept • 17
Configuring the Processor with ProWORX • 31
Configuring the Processor with Unity Pro • 35
Connect Your PC to the Processor • 41
Connecting to the Module • 88
Connecting to the Processor with TCPIP • 43
Connection • 233
Consumer • 233

Index PTQ-ADM ♦ 'C' Programmable
Developer Guide ‘C’ Programmable Network Interface Module for Quantum

Page 238 of 239 ProSoft Technology, Inc.
 February 20, 2013

Controller • 233
Create a New Project • 18, 36
Creating a New Borland C++ 5.02 ADM Project • 76
Creating a New Digital Mars C++ 8.49 ADM Project •

67
Creating a ROM Disk Image • 82

D

Database • 60
Debugging Strategies • 95
Development Tools • 57
DLL • 233
DOS 6 XL Reference Manual • 54, 227
Download the Project to the Processor • 24
Download the Project to the Quantum Processor • 44
Downloading a ROM Disk Image • 84, 93
Downloading Files From a PC to the ADM Module • 94
Downloading the Sample Program • 64, 74

E

Embedded I/O • 234
Enabling the Console • 89
ExplicitMsg • 234

F

Functional Specifications • 226

G

General Specifications • 224

H

Hardware • 61
Hardware and Software Requirements • 12
Hardware Specifications • 225
Header File • 56
How to Contact Us

Technical Support • 230
HSC • 234

I

Information for Concept Version 2.6 Users • 14
Information for ProTalk® Product Users • 3
Input Image • 234
Inserting the 1454-9F connector • 46
Install the ProTalk Module in the Quantum Rack • 46,

47
Installing MDC Configuration Files • 14
Installing RY.exe and SY.exe • 93
Introduction to PTQ-ADM • 53

L

Library • 234
LIMITED WARRANTY • 231
Linked Library • 234
Local I/O • 234
Long • 234

M

Module • 234
Multithreading Considerations • 56
Mutex • 234
MVI Suite • 234
MVI46 • 235
MVI56 • 235
MVI69 • 235
MVI71 • 235
MVI94 • 235
MVIbp_Close • 167, 168
MVIbp_ErrorString • 183
MVIbp_GetConsoleMode • 186
MVIbp_GetIOConfig • 169, 172
MVIbp_GetModuleInfo • 182
MVIbp_GetProcessorStatus • 188
MVIbp_GetSetupMode • 187
MVIbp_GetVersionInfo • 181
MVIbp_Open • 167, 168
MVIbp_ReadOutputImage • 175, 176
MVIbp_ReceiveMessage • 177, 180
MVIbp_SendMessage • 178, 179
MVIbp_SetConsoleMode • 190
MVIbp_SetIOConfig • 170, 171, 175, 176, 178, 180
MVIbp_SetModuleStatus • 185
MVIbp_SetUserLED • 184
MVIbp_Sleep • 189
MVIbp_WaitForInputScan • 173, 174
MVIbp_WaitForOutputScan • 173, 174
MVIbp_WriteInputImage • 175, 176
MVIsp_Close • 194, 197
MVIsp_Config • 198
MVIsp_Getch • 208, 209, 215, 217, 219
MVIsp_GetCountUnread • 219
MVIsp_GetCountUnsent • 218
MVIsp_GetCTS • 204
MVIsp_GetData • 216, 219
MVIsp_GetDCD • 206
MVIsp_GetDSR • 205
MVIsp_GetDTR • 202, 203
MVIsp_GetLineStatus • 207
MVIsp_GetRTS • 200, 201
MVIsp_Gets • 209, 211, 214, 217, 219
MVIsp_GetVersionInfo • 222
MVIsp_Open • 193, 196, 197, 198
MVIsp_OpenAlt • 195
MVIsp_PurgeDataUnread • 220, 221
MVIsp_PurgeDataUnsent • 220, 221
MVIsp_Putch • 208, 209, 211, 213, 218
MVIsp_PutData • 208, 211, 212, 215, 217, 218
MVIsp_Puts • 208, 210, 213, 215, 218
MVIsp_SetDTR • 202, 203
MVIsp_SetHandshaking • 199
MVIsp_SetRTS • 200, 201
MVIUPDAT • 84

O

Operating System • 54
Originator • 235

PTQ-ADM ♦ 'C' Programmable Index
‘C’ Programmable Network Interface Module for Quantum Developer Guide

ProSoft Technology, Inc. Page 239 of 239
February 20, 2013

Output Image • 235

P

Package Contents • 12
PC and PC Software • 13
Pinouts • 3, 46, 48
Producer • 235
Product Specifications • 223
PTO • 235
PTQ Suite • 235
PTQ System BIOS Setup • 85

Q

Quantum Hardware • 12

R

Recommended Compact Flash (CF) Cards • 13
Required Hardware • 87
Required Software • 87
RS-232

Modem Connection • 49
Null Modem Connection (Hardware Handshaking)

• 49
Null Modem Connection (No Hardware

Handshaking) • 50
RS-232 Application Port(s) • 48
RS-232 Configuration/Debug Port • 48
RS-422 • 51
RS-485 and RS-422 Tip • 51
RS-485 Application Port(s) • 50
RS-485 Programming Note • 61

S

Scanner • 235
Serial Port API Communications • 208
Serial Port API Configuration Functions • 198
Serial Port API Initialization Functions • 193
Serial Port API Miscellaneous Functions • 222
Serial Port API Status Functions • 200
Serial Port Library Functions • 191
Set up Data Memory in Project • 22
Setting Up the ProTalk Module • 45
Setting Up Your Compiler • 64
Setting Up Your Development Environment • 63
Side-connect • 235
Software • 62
Start Here • 11
Support, Service & Warranty • 229

T

Target • 236
Theory of Operation • 58
Thread • 236
Transferring Files to and from the Module with

HyperTerminal • 87

U

Understanding the PTQ-ADM API • 55
Uploading files from the ADM module to a PC • 95

V

Verify Jumper Settings • 46
Verify Successful Download • 27

W

Warnings • 3
WINIMAGE - Windows Disk Image Builder • 82
Word • 236

Y

Your Feedback Please • 2

