

MVI69E-MBTCP
Modbus TCP/IP Enhanced
Communication Module

 September 29, 2025

USER MANUAL

ProSoft Technology, Inc. Page 2 of 158

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions, comments,

compliments or complaints about our products, documentation, or support, please write or call us.

ProSoft Technology, Inc.

+1 (661) 716-5100

+1 (661) 716-5101 (Fax)

www.prosoft-technology.com

ps.support@belden.com

MVI69E-MBTCP User Manual

For Public Use.

September 29, 2025

ProSoft Technology®, is a registered copyright of ProSoft Technology, Inc. All other brand or product names are or

may be trademarks of, and are used to identify products and services of, their respective owners.

Content Disclaimer

This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of

these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate

and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or

use thereof. Neither ProSoft Technology nor any of its affiliates or subsidiaries shall be responsible or liable for

misuse of the information contained herein. Information in this document including illustrations, specifications and

dimensions may contain technical inaccuracies or typographical errors. ProSoft Technology makes no warranty or

representation as to its accuracy and assumes no liability for and reserves the right to correct such inaccuracies or

errors at any time without notice. If you have any suggestions for improvements or amendments or have found errors

in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including

photocopying, without express written permission of ProSoft Technology. All pertinent state, regional, and local safety

regulations must be observed when installing and using this product. For reasons of safety and to help ensure

compliance with documented system data, only the manufacturer should perform repairs to components. When

devices are used for applications with technical safety requirements, the relevant instructions must be followed.

Failure to use ProSoft Technology software or approved software with our hardware products may result in injury,

harm, or improper operating results. Failure to observe this information can result in injury or equipment damage.

© 2025 ProSoft Technology. All Rights Reserved.

For professional users in the European Union

If you wish to discard electrical and electronic equipment (EEE), please contact your dealer or supplier
for further information.

Prop 65 Warning – Cancer and Reproductive Harm – www.P65Warnings.ca.gov

Agency Approvals and Certifications

Please visit our website: www.prosoft-technology.com

https://www.prosoft-technology.com/
mailto:ps.support@belden.com
http://www.p65warnings.ca.gov/
https://www.prosoft-technology.com/

ProSoft Technology, Inc. Page 3 of 158

Open-Source Information

Open-Source Software used in the product

The product contains, among other things, Open-Source Software files, as defined below, developed by third parties
and licensed under an Open-Source Software license. These Open-Source Software files are protected by copyright.
Your right to use the Open-Source Software is governed by the relevant applicable Open-Source Software license
conditions. Your compliance with those license conditions will entitle you to use the Open-Source Software as
foreseen in the relevant license. In the event of conflicts between other ProSoft Technology, Inc. license conditions
applicable to the product and the Open-Source Software license conditions, the Open-Source Software conditions
shall prevail. The Open-Source Software is provided royalty-free (i.e. no fees are charged for exercising the licensed
rights). Open-Source Software contained in this product and the respective Open-Source Software licenses are
stated in the module webpage, in the link Open-Source.
If Open-Source Software contained in this product is licensed under GNU General Public License (GPL), GNU Lesser
General Public License (LGPL), Mozilla Public License (MPL) or any other Open-Source Software license, which
requires that source code is to be made available and such source code is not already delivered together with the
product, you can order the corresponding source code of the Open-Source Software from ProSoft Technology, Inc. -
against payment of the shipping and handling charges - for a period of at least 3 years since purchase of the product.
Please send your specific request, within 3 years of the purchase date of this product, together with the name and
serial number of the product found on the product label to:

ProSoft Technology, Inc.
Director of Engineering
9201 Camino Media, Suite 200
Bakersfield, CA 93311
USA

Warranty regarding further use of the Open-Source Software

ProSoft Technology, Inc. provides no warranty for the Open-Source Software contained in this product, if such Open-
Source Software is used in any manner other than intended by ProSoft Technology, Inc. The licenses listed define
the warranty, if any, from the authors or licensors of the Open-Source Software. ProSoft Technology, Inc. specifically
disclaims any warranty for defects caused by altering any Open-Source Software or the product’s configuration. Any
warranty claims against ProSoft Technology, Inc. in the event that the Open-Source Software contained in this
product infringes the intellectual property rights of a third party are excluded. The following disclaimer applies to the
GPL and LGPL components in relation to the rights holders:
“This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License and the GNU Lesser General Public License for more details.”
For the remaining Open-Source components, the liability exclusions of the rights holders in the respective license
texts apply. Technical support, if any, will only be provided for unmodified software.

ProSoft Technology, Inc. Page 4 of 158

Table of Contents

1 Start Here 7

1.1 System Requirements ... 7
1.2 Deployment Checklist .. 8
1.3 Setting Jumpers .. 8
1.4 Installing the Module in the Rack .. 9
1.5 Package Contents ... 12

2 Adding the Module to RSLogix 13

2.1 Creating the Module in a Studio 5000 Project .. 13
2.1.1 Creating a Module in the Project Using an Add-On Profile 14
2.1.2 Creating a Module in the Project Using a Generic 1769 Module Profile 18

2.2 Installing ProSoft Configuration Builder .. 20
2.3 Generating the AOI (.L5X File) in ProSoft Configuration Builder 21

2.3.1 Setting Up the Project in PCB ... 21
2.3.2 Creating and Exporting the .L5X File .. 23

2.4 Importing the Add-On Instruction .. 26
2.5 Adding Multiple Modules in the Rack (Optional) ... 29

2.5.1 Adding an Additional Module in PCB .. 29
2.5.2 Adding an Additional Module in Studio 5000 .. 31

3 Configuring the MVI69E-MBTCP Using PCB 35

3.1 Basic PCB Functions ... 35
3.1.1 Creating a New PCB Project and Exporting an .L5X File 35
3.1.2 Renaming PCB Objects .. 35
3.1.3 Editing Configuration Parameters ... 36
3.1.4 Printing a Configuration File .. 37

3.2 Module Configuration Parameters .. 38
3.2.1 Module ... 38
3.2.2 MBTCP Servers .. 39
3.2.3 MBTCP Client x ... 41
3.2.4 MBTCP Client x Commands ... 43
3.2.5 Ethernet 1 .. 46
3.2.6 Static ARP Table ... 47

3.3 Downloading the Configuration File to the Processor ... 48
3.4 Uploading the Configuration File from the Processor ... 50

4 Using Controller Tags 53

4.1 Controller Tags .. 53
4.1.1 MVI69E-MBTCP Controller Tags .. 54

4.2 User-Defined Data Types (UDTs) ... 55
4.2.1 MVI69E-MBTCP User-Defined Data Types .. 55

4.3 MBTCP Controller Tag Overview .. 57
4.3.1 MBTCP.CONFIG ... 57
4.3.2 MBTCP.DATA ... 57
4.3.3 MBTCP.CONTROL ... 58
4.3.4 MBTCP.STATUS ... 65
4.3.5 MBTCP.UTIL ... 69

ProSoft Technology, Inc. Page 5 of 158

5 MVI69E-MBTCP Backplane Data Exchange 71

5.1 General Concepts of the MVI69E-MBTCP Data Transfer 71
5.2 Backplane Data Transfer... 71
5.3 Normal Data Transfer .. 73

5.3.1 Write Block: Request from the Processor to the Module .. 73
5.3.2 Read Block: Response from the Module to the Processor 73
5.3.3 Read and Write Block Transfer Sequences .. 74

5.4 Data Flow Between the Module and Processor .. 77
5.4.1 Server Mode .. 77
5.4.2 Master Mode ... 79

6 Legacy Mode 81

6.1 Legacy Mode Configuration .. 81
6.2 PCB Configuration ... 84

6.2.1 Module ... 85
6.2.2 Client 0 .. 86
6.2.3 Client 0 Commands ... 87
6.2.4 Servers .. 90
6.2.5 STATIC ARP TABLE ... 91
6.2.6 Ethernet 1 .. 92
6.2.7 Comment Parameter ... 92

6.3 Downloading PCB Configuration to the MVI69E-MBTCP 93
6.4 Optional Add-On Instruction .. 95

6.4.1 Setting Up the Optional AOI .. 97
6.4.2 Synchronizing the IP Settings from the MVI69E-MBTCP to the Processor 99
6.4.3 Synchronizing the IP Settings from the Processor to the MVI69E-MBTCP 100
6.4.4 Reading the Date/Time from the MVI69E-MBTCP to the Processor 101
6.4.5 Writing the Date/Time from the Processor to the MVI69E-MBTCP 102

7 Diagnostics and Troubleshooting 103

7.1 LED Status Indicators .. 103
7.2 Ethernet LED Indicators .. 105
7.3 Clearing a Fault Condition ... 105
7.4 Troubleshooting ... 106

7.4.1 Processor Errors ... 106
7.4.2 Module Errors .. 106

7.5 Connecting the PC to the Module's Ethernet Port .. 107
7.5.1 Setting Up a Temporary IP Address ... 108

7.6 Using the Diagnostics Menu in ProSoft Configuration Builder 110
7.6.1 Diagnostics Menu .. 112
7.6.2 Monitoring General Information ... 112
7.6.3 Monitoring Backplane Information ... 113
7.6.4 Modbus Server Driver Information .. 114
7.6.5 Monitoring Data Values in the Module’s Database ... 115
7.6.6 Modbus Client Driver Information .. 115

7.7 Communication Error Codes ... 116
7.7.1 Standard Modbus Protocol Exception Code Errors .. 116
7.7.2 Module Communication Error Codes .. 116
7.7.3 Command List Entry Errors ... 116
7.7.4 MBTCP Client-Specific Errors ... 116

7.8 Connecting to the MVI69E-MBTCP Webpage .. 117

ProSoft Technology, Inc. Page 6 of 158

8 Reference 118

8.1 Product Specifications ... 118
8.1.1 General Specifications - Modbus Client/Server .. 118
8.1.2 Hardware Specifications.. 119

8.2 About the Modbus TCP/IP Protocol .. 119
8.2.1 Modbus Client ... 120
8.2.2 Modbus Server .. 120
8.2.3 Function Codes Supported by the Module .. 121
8.2.4 Read Coil Status (Function Code 01) ... 121
8.2.5 Read Input Status (Function Code 02) .. 123
8.2.6 Read Holding Registers (Function Code 03) .. 124
8.2.7 Read Input Registers (Function Code 04) ... 125
8.2.8 Force Single Coil (Function Code 05) ... 126
8.2.9 Preset Single Register (Function Code 06) ... 127
8.2.10 Diagnostics (Function Code 08) .. 128
8.2.11 Force Multiple Coils (Function Code 15) ... 130
8.2.12 Preset Multiple Registers (Function Code 16) .. 131

8.3 Floating-Point Support ... 132
8.3.1 ENRON Floating Point Support ... 133
8.3.2 Configuring the Floating Point Data Transfer .. 133
8.3.3 Examples ... 134

8.4 Function Blocks ... 138
8.4.1 Event Command Blocks (2000 to 2019) ... 139
8.4.2 Client Status Request/Response Blocks (3000 to 3019) 140
8.4.3 Event Sequence Request Blocks (4000 to 4019) ... 141
8.4.4 Event Sequence Command Error Status Blocks (4100 to 4119) 142
8.4.5 Get Queue and Event Sequence Block Counts Block (4200)............................... 143
8.4.6 Command Control Blocks (5001 to 5016) ... 144
8.4.7 Add Event with Data for Client Blocks (8000) ... 145
8.4.8 Get Event with Data Status Block (8100) .. 146
8.4.9 Get General Module Status Data Block (9250) ... 147
8.4.10 Set Driver and Command Active Bits Block (9500) .. 148
8.4.11 Get Driver and Command Active Bits Block (9501) .. 149
8.4.12 Pass-Through Formatted Word Data Block for Functions 6 & 16 (9956) 150
8.4.13 Pass-Through Formatted Float Data Block for Functions 6 & 16 (9957) 151
8.4.14 Pass-Through Formatted Block for Function 5 (9958) .. 151
8.4.15 Pass-Through Formatted Block for Function 15 (9959) .. 152
8.4.16 Pass-Through Formatted Block for Function 23 (9961) .. 153
8.4.17 Pass-Through Block for Function 99 (9970) ... 153
8.4.18 Set Module Time Using Received Time Block (9972) .. 154
8.4.19 Pass Module Time to Processor Block (9973) .. 155
8.4.20 Reset Status Block (9997)... 155
8.4.21 Warm-boot Control Block (9998) ... 156
8.4.22 Cold-boot Control Block (9999) ... 156

8.5 Ethernet Port Connection .. 157
8.5.1 Ethernet Cable Specifications ... 157

9 Support, Service, and Warranty 158

9.1 Contacting Technical Support ... 158
9.2 Warranty Information ... 158

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Start Here User Manual

ProSoft Technology, Inc. Page 7 of 158

1 Start Here

To get the most benefit from this User Manual, you should have the following skills:

• Studio 5000 Logix Designer ®: launch the program, configure ladder logic, and transfer
the ladder logic to the processor

• Microsoft Windows: install and launch programs, execute menu commands, navigate
dialog boxes, and enter data

• Hardware installation and wiring: install the module, and safely connect Modbus and
CompactLogix devices to a power source and to the MVI69E-MBTCP module’s Ethernet
port

1.1 System Requirements

The MVI69E-MBTCP module requires the following minimum hardware and software
components:

• Rockwell Automation CompactLogix® processor (firmware version 10 or higher), with
compatible power supply and one free slot in the rack, for the MVI69E-MBTCP module.

Important: The MVI69E-MBTCP module has a power supply distance rating of 4 (L43 and L45 installations on first 2
slots of 1769 bus). It consumes 500 mA at 5 Vdc.

Important: For 1769-L23x processors, please make note of the following limitation:
1769-L23E-QBFC1B = 450 mA at 5 Vdc (No MVI69E module can be used with this processor.)

• The module requires 500 mA of available 5 Vdc power

• Rockwell Automation Studio 5000 programming software version 16 or higher

• Rockwell Automation RSLinx® communication software version 2.51 or higher

• ProSoft Configuration Builder (PCB) (included)

• ProSoft Discovery Service (PDS) (included in PCB)

• Pentium® II 450 MHz minimum. Pentium III 733 MHz (or better) recommended

• Supported operating systems:

o Microsoft Windows 10

o Microsoft Windows 7 Professional (32-or 64-bit)

o Microsoft Windows XP Professional with Service Pack 1 or 2

• 128 Mbytes of RAM minimum, 256 Mbytes of RAM recommended

Note: The Hardware and Operating System requirements in this list are the minimum recommended to install and run
software provided by ProSoft Technology®. Other third-party applications may have different minimum requirements.
Refer to the documentation for any third-party applications for system requirements.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Start Here User Manual

ProSoft Technology, Inc. Page 8 of 158

1.2 Deployment Checklist

Before you begin to configure the module, consider the following questions. Your answers will
help you determine the scope of your project, and the configuration requirements for a
successful deployment.

• Are you creating a new application or integrating the module into an existing application?
Most applications can use the Sample Add-On Instruction or Sample Ladder Logic
without any modification.

• Which slot number in the chassis does the MVI69E-MBTCP module occupy? For
communication to occur, enter the correct slot number in the sample program.

• Are the Studio 5000 and RSLinx software installed?

• RSLogix and RSLinx are required to communicate to the CompactLogix processor.

• How many words of data do you need to transfer in your application (from CompactLogix
to Module / to CompactLogix from Module)?

• Is this module replacing an existing legacy MVI69-MNET module (refer to Chapter 6
Legacy Mode on page 81)?

1.3 Setting Jumpers

The Setup Jumper acts as "write protection" for the module’s firmware. In "write protected"
mode, the Setup pins are not connected, and the module’s firmware cannot be overwritten. The
module is shipped with the Setup jumper OFF. Do not jumper the Setup pins together unless
you are directed to do so by ProSoft Technical Support (or you want to update the module
firmware).

The following illustration shows the MVI69E-MBTCP jumper configuration with the Setup
Jumper OFF.

Note: When installing the module in a remote rack, it may be preferable to leave the Setup pins jumpered. That way,
module firmware updates can be done without physically accesssing the module.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Start Here User Manual

ProSoft Technology, Inc. Page 9 of 158

1.4 Installing the Module in the Rack

Make sure the processor and power supply are installed and configured before installing the
MVI69E-MBTCP module. Refer to the Rockwell Automation product documentation for
installation instructions.

Warning: Please follow all safety instructions when installing this or any other electronic devices. Failure to follow
safety procedures could result in damage to hardware or data, or even serious injury or death to personnel. Refer to
the documentation for each device to be connected to verify that suitable safety procedures are in place before
installing or servicing the device.

After you verify the jumper placements, insert the MVI69E-MBTCP into the rack. Use the same
technique recommended by Rockwell Automation to remove and install CompactLogix modules.

Warning: This module is not hot-swappable! Always remove power from the rack before inserting or removing this
module, or damage may result to the module, the processor, or other connected devices.

1 Align the module using the upper and lower tongue-and-groove slots with the adjacent
module and slide forward in the direction of the arrow.

2 Move the module back along the tongue-and-groove slots until the bus connectors on
the MVI69 module and the adjacent module line up with each other.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Start Here User Manual

ProSoft Technology, Inc. Page 10 of 158

3 Push the module’s bus lever back slightly to clear the positioning tab and move it firmly
to the left until it clicks. Ensure that it is locked firmly in place.

4 Close all DIN-rail latches.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Start Here User Manual

ProSoft Technology, Inc. Page 11 of 158

5 Press the DIN-rail mounting area of the controller against the DIN-rail. The latches
momentarily open and lock into place.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Start Here User Manual

ProSoft Technology, Inc. Page 12 of 158

1.5 Package Contents

The following components are included with your MVI69E-MBTCP module, and are all required
for installation and configuration.

Important: Before beginning the installation, please verify that all the following items are present.

Qty. Part Name Part Number Part Description

1 MVI69E-MBTCP Module MVI69E-MBTCP Modbus TCP/IP Enhanced

Communication Module

If any of these components are missing, please contact ProSoft Technology Technical Support
for replacement parts. For the latest files, please visit www.prosoft-technology.com.

http://www.prosoft-technology.com/

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 13 of 158

2 Adding the Module to RSLogix

To add the MVI69E-MBTCP module in Studio 5000, you must:

1) Create a new project in Studio 5000.

2) Add the module to the Studio 5000 project. There are two ways to do this:

• Use the Add-On Profile from ProSoft Technology. This is the preferred way, but
requires RSLogix version 15 or later.

• Manually create the module using a generic 1769 profile, and then manually
configure the module parameters. Use this method if you have RSLogix version 14
or earlier.

3) Create an Add-On Instruction file using ProSoft Configuration Builder (PCB) and export
the Add-On Instruction to an Studio 5000 compatible file (.L5X file).

4) Import the Add-On Instruction (the .L5X file) into Studio 5000.

The .L5X file contains the Add-On Instruction, user-defined data types, controller tags and
ladder logic required to configure the MVI69E-MBTCP module.

2.1 Creating the Module in a Studio 5000 Project

In an Studio 5000 project, there are two ways to add the MVI69E-MBTCP module to the project.

• Use an Add-On Profile (AOP) from ProSoft Technology. The AOP contains all the
configuration information needed to add the module to the project. This is the preferred
way, but requires RSLogix version 15 or later. Refer to Creating a Module in the Project
Using an Add-On Profile (page 14).

• If using an AOP is not an option, manually create and configure the module using a
generic 1769 profile. Use this method if you have RSLogix version 14 or earlier. Refer to
Creating a Module in the Project Using a Generic 1769 Module Profile (page 18).

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 14 of 158

2.1.1 Creating a Module in the Project Using an Add-On Profile

2.1.1.1 Installing an Add-On Profile

Download the AOP file (MVI69x_RevX.X_AOP.zip) from the product webpage (www.prosoft-
technology.com) onto your local hard drive and then extract the files from the zip archive. Make
sure you have shut down Studio 5000 and RSLinx before you install the Add-On Profile (AOP).

1 Run the MPSetup.exe file to start the Setup Wizard. Follow the Setup Wizard to install
the AOP.

2 Continue to follow the steps in the wizard to complete the installation.

http://www.prosoft-technology.com/
http://www.prosoft-technology.com/

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 15 of 158

3 Click FINISH when complete. The AOP is now installed in Studio 5000.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 16 of 158

2.1.1.2 Using an Add-On Profile

1 In Studio 5000, expand the I/O CONFIGURATION folder in the Project tree. Right-click the
appropriate communications bus and choose NEW MODULE.

2 This opens the Select Module Type dialog box.

3 In the Module Type Vendor Filters area, uncheck all boxes except the PROSOFT

TECHNOLOGY box. A list of ProSoft Technology modules appears.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 17 of 158

4 Select the MVI69E-MBTCP module in the list and click CREATE.

5 In the New Module dialog box, edit the NAME and SLOT. Click OK.

Note: The I/O TABLE SIZES above should reflect the Block Transfer Size parameter set in ProSoft
Configuration Builder (see Module Configuration Parameters (page 38)).

A Block Transfer Size of 60 uses an I/O TABLE SIZE of 62/61 words.
A Block Transfer Size of 120 uses an I/O TABLE SIZE of 122/121 words.
A Block Transfer Size of 240 uses an I/O TABLE SIZE of 242/241 words.

6 The MVI69E-MBTCP module is now visible in the I/O Configuration tree.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 18 of 158

2.1.2 Creating a Module in the Project Using a Generic 1769 Module Profile

1 Expand the I/O CONFIGURATION folder in the Project tree. Right-click the appropriate
communications bus and choose NEW MODULE.

2 This opens the Select Module Type dialog box.

3 Enter GENERIC in the search text box and select the GENERIC 1769 MODULE. If you're
using an earlier version of RSLogix, expand OTHER in the Select Module dialog box, and
then select the GENERIC 1769 MODULE.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 19 of 158

4 Set the Module Properties values as follows:

Parameter Value

Name Enter a module identification string. Example: MVI69E_MBTCP

Description Enter a description for the module. Example: ProSoft

communication module for Modbus TCP/IP communications.

Comm Format Select DATA-INT

Slot Enter the slot number in the rack where the MVI69E-MBTCP

module is installed.

Input Assembly Instance 101

Input Size 62 / 122 / 242

Output Assembly Instance 100

Output Size 61 / 121 / 241

Configuration Assembly Instance 102

Configuration Size 0

5 The following illustration shows an example where the module was configured for a
block transfer size of 60 words (input block size = 62 words, output block size = 61
words):

6 The following options are available:

Block Transfer Size Input Block Size Output Block Size

60 62 61

120 122 121

240 242 241

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 20 of 158

7 On the Connection tab, set the REQUESTED PACKET INTERVAL value for your project and
click OK. (10 to 30 ms is recommended).

8 The MVI69E-MBTCP module is now visible in the I/O Configuration tree.

2.2 Installing ProSoft Configuration Builder

Use the ProSoft Configuration Builder (PCB) software to configure the module. You can find the
latest version of the ProSoft Configuration Builder (PCB) on our website:
www.prosoft-technology.com. The installation filename contains the PCB version number. For
example, PCB_4.3.4.5.0238.EXE.

1 Open a browser window and navigate to www.prosoft-technology.com.

2 Perform a search for 'pcb' in the Search bar. Click on the ProSoft Configuration Builder
search result.

3 On the PCB page, click the download link for ProSoft Configuration Builder, and save
the file to your Windows desktop.

4 After the download completes, double-click the file to install. If you are using Windows 7,
right-click the PCB installation file and then choose RUN AS ADMINISTRATOR. Follow the
instructions that appear on the screen.

5 If you want to find additional software specific to your MVI69E-MBTCP, enter the model
number into the ProSoft website search box and press the Enter key.

https://www.prosoft-technology.com/

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 21 of 158

2.3 Generating the AOI (.L5X File) in ProSoft Configuration Builder

The following sections describe the steps required to set up a new configuration project in
ProSoft Configuration Builder (PCB), and to export the .L5X file for the project.

2.3.1 Setting Up the Project in PCB

1 Start PROSOFT CONFIGURATION BUILDER (PCB).

2 The PCB window consists of a tree view on the left, and an information pane and a
configuration pane on the right side of the window. The tree view consists of folders for
Default Project and Default Location, with a Default Module in the Default Location
folder. The following illustration shows the PCB window with a new project.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 22 of 158

3 In the Tree view, right-click DEFAULT MODULE, and then choose CHOOSE MODULE TYPE.
This opens the Choose Module Type dialog box.

4 In the Product Line Filter area of the dialog box, click MVI69. In the Select Module Type
dropdown list, click MVI69E-MBTCP, and then click OK to save your settings and return
to the ProSoft Configuration Builder window. The MVI69E-MBTCP icon is now visible in
the tree view.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 23 of 158

2.3.2 Creating and Exporting the .L5X File

There are two parameters in the PCB configuration that affect the format of the .L5X file that is
exported. Before exporting the .L5X file to the PC/Laptop, check the Block Transfer Size and
Slot Number parameters.

1 Expand the MVI69E-MBTCP icon by clicking the [+] symbol beside it. Similarly, expand
the icon.

2 Double-click the icon to open the Edit - Module dialog box.

3 Set the Block Transfer Size to the desired size of the data blocks transferred between
the module and processor (60, 120 or 240 words). You can find block transfer size
information in Normal Data Transfer (page 73).

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 24 of 158

4 Edit the Slot Number indicating where the module is located in the 1769 bus.

5 Click OK to close the Edit – Module dialog box. The .L5X file is now ready to export to
the PC/Laptop.

6 Right-click the MVI69E-MBTCP icon in the project tree and choose EXPORT AOI FILE.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 25 of 158

7 Save the .L5X file to the PC/Laptop in an easily found location, such as the Windows
Desktop.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 26 of 158

2.4 Importing the Add-On Instruction

1 Open the application in Studio 5000.

2 Expand the TASKS folder, and expand the MAINTASK folder.

3 Expand the MAINPROGRAM folder and then double-click the MAINROUTINE icon to display
the Routine Editor. The MainRoutine contains rungs of logic. The very last rung in this
routine is blank. This is where you can import the Add-On Instruction (AOI).

Note: You can place the Add-On Instruction in a different routine than the MainRoutine. Make sure to add a
rung with a jump instruction (JSR) in the MainRoutine to jump to the routine containing the Add-On
Instruction.

4 Right-click an empty rung in the routine and choose IMPORT RUNGS.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 27 of 158

5 Select the .L5X file that you exported from ProSoft Configuration Builder. See Creating
and Exporting the .L5X File (page 23).

6 This opens the Import Configuration dialog box. Click TAGS under MAINROUTINE to
display the controller tags in the Add-On Instruction.

Note: If you are using RSLogix version 16 or earlier, the Import Configuration dialog box does not contain
the Import Content tree.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 28 of 158

7 If the module is not located in the default slot (or is in a remote rack), edit the connection
input and output variables that define the path to the module in the FINAL NAME column
(NAME column for RSLogix version 16 or less). For example, if your module is located in
slot 3, change Local:1:I in the FINAL NAME column to Local:3:I. Do the same for
Local:1:O.

Note: If the module is located in Slot 1 of the local rack, this step is not required.

8 Click OK to confirm the import. RSLogix indicates that the import is in progress:

9 When the import is completed, the new rung with the Add-On Instruction is visible as
shown in the following image.

10 The procedure has also imported new user-defined data types, data objects and the
Add-On instruction to be used in the project with the MVI69E-MBTCP module.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 29 of 158

2.5 Adding Multiple Modules in the Rack (Optional)

The following procedure is for running multiple MVI69E-MBTCP modules running in the same
CompactLogix rack.

1 Add a new MVI69E-MBTCP module to the ProSoft Configuration Builder (PCB) project.

2 Export the module configuration as an L5X file.

3 Add a new MVI69E-MBTCP to the Studio 5000 project.

4 Import the .L5X file into Studio 5000 for the new module as an Add-On Instruction.

2.5.1 Adding an Additional Module in PCB

1 Start ProSoft Configuration Builder (PCB).

2 Right click DEFAULT LOCATION (which you can rename) and choose ADD MODULE.

3 Right-click NEW MODULE and choose CHOOSE MODULE TYPE.

4 In the Choose Module Type dialog box, select MVI69E in the PRODUCT LINE FILTER area,
and then select MVI69E-MBTCP as the MODULE TYPE. Click OK.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 30 of 158

5 Select the MVI69E-MBTCP module in the tree and repeat the above steps to add a
second (or more) module in the PCB project.

Note: Give each MVI69E-MBTCP module a unique name. The default name on a duplicate module
appends a number to the end such as MVI69E-MBTCP_000, MVI69E-MBTCP_001, etc.

6 Rename the module by right clicking the module and selecting Rename.

7 Configure the module parameters. See Module Configuration Parameters (page 38), and
then export the AOI .L5X file for the new module (right-click the module and then choose
EXPORT AOI FILE). See Creating and Exporting the .L5X File (page 23).

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 31 of 158

2.5.2 Adding an Additional Module in Studio 5000

Place multiple MVI69E-MBTCP modules in the same rack provided it does not exceed the
power distance rating of the CompactLogix rack (see System Requirements (page 7)). Adding
an additional module is similar to installing a new module; however, the name of the module
must be unique.

1 Start Studio 5000 and open the project.

2 In Studio 5000, locate the I/O CONFIGURATION folder. Right click COMPACTBUS LOCAL
and choose NEW MODULE.

3 In the Select Module Type dialog box, select the MVI69E-MBTCP module.

• For an Add-On Profile (AOP), it adds the MVI69E-MBTCP module and configures
the relevant parameters. RSLogix version 15 or later is required to use an AOP.

• If using an AOP is not an option, select GENERIC 1769 MODULE and click CREATE.

4 The New Module dialog box appears. Enter a unique name for the new module, and
confirm the slot number of the new module.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 32 of 158

5 Click OK. The new module is now visible.

6 Import the Add-On Instruction(AOI) for the new module (see Adding another module in
PCB). In the Controller Organizer pane, double-click MAINROUTINE to open the ladder for
the routine.

7 Right-click an empty rung in the routine and then choose IMPORT RUNGS…

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 33 of 158

8 Select the .L5X file you created and exported for the new module, and click IMPORT.
Recall that the new .L5X file has a unique filename that is specific to the new module.

9 This opens the Import Configuration dialog box. Click TAGS to show the controller tags in
the AddOn Instruction. Edit the FINAL NAME column of the tags for the second module to
make them unique.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Adding the Module to RSLogix User Manual

ProSoft Technology, Inc. Page 34 of 158

10 Associate the I/O connection variables to the correct module in the corresponding slot
number. The default values are Local:1:I and Local:1:O. Edit these values if the card is
placed in a slot location other than slot 1 (Local:1:x means the card is located in slot 1).
Since the second card is placed in slot 2, change the FINAL NAME to Local:2:I and
Local:2:O. Also, you can append a ‘_2’ at the end of the FINAL NAME of ‘AOI69_MBTCP’
and ‘MBTCP’ arrays as shown below. Then click OK.

11 The setup procedure is now complete. Save the project. It is ready to download to the
CompactLogix processor.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 35 of 158

3 Configuring the MVI69E-MBTCP Using
PCB

ProSoft Configuration Builder (PCB) provides a quick and easy way to manage module
configuration files customized to meet your application needs.

You build and edit the module’s configuration in ProSoft Configuration Builder. You use PCB to
download the configuration file to the CompactLogix processor, where it is stored in the
MBTCP.CONFIG controller tag generated by the previously exported AOI. See Creating and
Exporting the .L5X File (page 23). When the MVI69E-MBTCP module boots up, it requests the
processor to send the configuration over the backplane in special Configuration Blocks.

See the chapter Adding the Module to RSLogix (page 13) for the procedures to create a new
PCB project and export a .L5X file for the processor. This chapter describes the module
configuration parameters in detail, as well as how to download the configuration to the
processor using PCB.

3.1 Basic PCB Functions

3.1.1 Creating a New PCB Project and Exporting an .L5X File

Please see the chapter Adding the Module to RSLogix (page 13).

3.1.2 Renaming PCB Objects

Rename objects such as the Default Project and Default Location folders in the tree view. You
can also rename the Module icon to customize the project.

1 Right-click the object you want to rename and then choose RENAME.

2 Type the new name for the object and press Enter.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 36 of 158

3.1.3 Editing Configuration Parameters

1 Click the [+] sign next to the MVI69E-MBTCP icon to expand module information.

2 Click the [+] sign next to any icon to view information and configuration options.

3 Double-click any icon to open an Edit dialog box. To edit a parameter, click the
parameter in the left pane and then make your changes in the right pane.

4 Click OK to save changes.

5 Double-click any icon to open an Edit dialog box to build and edit Modbus Client
commands.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 37 of 158

6 To add a row to the table, click ADD ROW.

7 To edit the row, click EDIT ROW. This opens an Edit dialog box.

3.1.4 Printing a Configuration File

1 In the main PCB window, right-click the MVI69E-MBTCP icon and then choose VIEW

CONFIGURATION.

2 In the View Configuration dialog box, click the FILE menu and then click PRINT.

3 In the Print dialog box, choose the printer to use from the drop-down list, select the
printing options, and then click OK.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 38 of 158

3.2 Module Configuration Parameters

3.2.1 Module

This section contains general module configuration parameters. In the ProSoft Configuration

Builder (PCB) tree view, expand the MVI69E-MBTCP icon, then expand MODULE, and then

double-click the MODULE icon.

Parameter Value Description

Module Name ASCII

characters

(max. 38)

Assigns a name to the module that can be viewed using the

configuration/debug port. Use this parameter to identify the module and

the configuration file.

Read Register Start 0 to 9999 Specifies the starting address of the module's Read Data area. Data in

this area is transferred from the module to the processor.

Read Register Count 0 to 10,000 Specifies the size of the Read Data area.

Write Register Start 0 to 9999 Specifies the start of the Write Data area in module memory. Data in this

area is transferred in from the processor.

Write Register Count 0 to 10,000 Specifies the size of the Write Data area.

Failure Flag Count 0 to 65535 Specifies the number of consecutive backplane transfer failures that can

occur before Modbus communications are halted.

Error/Status Block

Pointer

-1 to 9955 The starting MVI69E-MBTCP database location to store server

error/status data. If a value of -1 is entered, the error/status data will not

be placed in the database.

This feature returns 8 server error/status values. The descriptions of

these values start at the

MBTCP.STATUS.GeneralStatus.MNETRequestCount controller tag.

Refer to the General Status description on page 67 for more information.

Initialize Input Image Yes or No This parameter determines if the input image data and the module’s

Read Register Data values are initialized with Read Register Data values

from the processor. If you set the parameter to No, the Read Register

Data values in the module are set to 0 upon initialization. If you set the

parameter to Yes, the data is initialized with Read Register Data values

from the processor. Using this option requires associated ladder logic to

pass the data from the processor to the module.

Block Transfer Size 60, 120 or 240 Specifies the number of words in each block transferred between the

module and processor.

Slot Number 1 to x Specifies the slot in the CompactLogix rack for the module.

Important: The sum of the Read Register Count and Write Register Count cannot exceed 10,000 total registers.
Furthermore, neither the Read Data nor the Write Data area may extend above module register 9999. The Read
Data and Write Data areas must have separate address ranges in the module database and must not overlap.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 39 of 158

3.2.2 MBTCP Servers

This section applies to configuring the MVI69E-MBTCP Server (Slave) Driver. In the ProSoft
Configuration Builder tree view, double-click the MBTCP SERVERS icon.

Parameter Value Description

Start Active Yes or No Specifies whether the port and commands are active upon module boot-up.

Pass-Through

Mode

Client, Server,

or Server with

Pass-Through

Specifies which device type the port emulates. Refer to the section Data Flow

Between the Module and Processor (page 77) for more information on the

server with Pass-Through option.

Float Flag Yes or No Specifies how the Server driver responds to Function Code 3, 6, and 16

commands (read and write Holding Registers) from a remote client when it is

moving 32-bit floating-point data.

If the remote client expects to receive or send one complete 32-bit floating-

point value for each count of one (1), then set this parameter to YES. When set

to YES, the Server driver returns values from two consecutive 16-bit internal

memory registers (32 total bits) for each count in the read command or receive

32-bits per count from the client for write commands. Example: Count = 10,

Server driver sends 20 16-bit registers for 10 total 32-bit floating-point values.

If, however, the remote client sends a count of two (2) for each 32-bit floating-

point value it expects to receive or send, or if you do not plan to use floating-

point data in your application, then set this parameter to NO (the default

setting).

You also must set the Float Start and Float Offset parameters to appropriate

values whenever the Float Flag parameter is set to YES.

Float Start 0 to 9998 Defines the first register of floating-point data. All requests with register values

greater-than or equal to this value are considered floating-point data requests.

This parameter is only used if the Float Flag is enabled. For example, if you

enter a value of 7000, all requests for registers 7000 and above are

considered as floating-point data.

Float Offset 0 to 9998 Defines the start register for floating-point data in the internal database. This

parameter is used only if the Float Flag is enabled. For example, if you set the

Float Offset value to 3000 and set the float start parameter to 7000, data

requests for register 7000 use the internal Modbus register 3000.

Output Offset 0 to 9999 Specifies the offset address into the internal Modbus database for network

requests for Modbus function 1, 5 or 15 commands. For example, if you set

the value to 100, an address request of 0 corresponds to register 100 in the

database.

Bit Input Offset 0 to 9999 Specifies the offset address into the internal Modbus database for network

requests for Modbus function 2 commands. For example, if you set the value

to 150, an address request of 0 returns the value at register 150 in the

database.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 40 of 158

Holding Register

Offset

0 to 9999 Specifies the offset address in the internal Modbus database for network

requests for Modbus function 3, 6, or 16 commands. For example, if you enter

a value of 50, a request for address 0 corresponds to the register 50 in the

database.

Word Input

Offset

0 to 9999 Specifies the offset address into the internal Modbus database for network

requests for Modbus function 4 commands. For example, if you set the value

to 150, an address request of 0 returns the value at register 150 in the

database.

Connection

Timeout

0 to 1200 Specifies the server’s timeout period if it is not receiving any new data in the

number of seconds preset.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 41 of 158

3.2.3 MBTCP Client x

This section defines the general configuration for MBTCP Client x. You can configure up to 20
MBTCP clients, each using the parameters below. In the ProSoft Configuration Builder tree
view, double-click the MBTCP CLIENT X icon.

Parameter Value Description

Enabled Yes or No Enables this client

Start Active Yes or No Specifies whether to start with commands active on boot up

Error/Status Pointer -1 to 9990 The starting MVI69E-MBTCP database location to store Client x’s

error/status data. If a value of -1 is entered, the error/status data will

not be placed in the database.

This feature returns 8 Client x error/status data values. The

descriptions of these values start at the

MBTCP.STATUS.ClientStatus.CommandRequests controller tag.

Refer to the Client Status description on page 65 for more information.

Command Error Pointer -1 to 9984 Specifies the address in the module’s database where the command

error data is placed. If you set the value to -1, the data is not

transferred to the database. This data should be placed within the

read data range of module memory.

Minimum Command

Delay

0 to 65535

milliseconds

Specifies the number of milliseconds to wait between receiving the

end of a server's response to the most recently transmitted command

and the issuance of the next command.

You can use this parameter to place a delay after each command to

avoid sending commands on the network faster than the servers can

be ready to receive them. It does not affect retries of a command, as

retries are issued when a command failure is recognized.

Response Timeout 1 to 65535

milliseconds

Specifies the command response timeout period in 1 millisecond

increments. The client waits for a response from the addressed server

within the timeout period before re-transmitting the command (Retries)

or skipping to the next command in the Command List.

The value depends on the communication network used and the

expected response time (plus or minus) of the slowest device on the

network.

Retry Count 0 to 10 Specifies the number of times a command is retried if it fails.

Float Flag Yes or No Specifies if the Daniel/ENRON-specific floating-point data access

functionality is to be implemented. If you set the Float Flag to Y,

Modbus functions 3, 6 and 16 interpret floating point values for

registers as specified by the two following parameters (Float Start,

Float Offset).

Note: You do not need to enable this parameter for most applications

using floating-point data.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 42 of 158

Float Start 0 to 9998 Specifies the first register of floating-point data. All requests with

register values greater-than or equal to this value are considered

floating-point data requests. This parameter is only used if the Float

Flag is enabled.

Float Offset 0 to 9998 Specifies the start register for floating-point data in the internal

database. This parameter is used only if the Float Flag is enabled.

ARP Timeout 1 to 60 seconds Specifies the number of seconds to wait for an ARP reply after a

request is issued. If the value is out of range, the module uses the

default value of 5.

Command Error Delay 0 to 300 Specifies the number of 100 millisecond intervals to turn off a

command in the error list after an error is recognized for the

command. If you set this parameter to 0, there is no delay.

MBAP Port Override Yes or No Override default port settings.

NO = Use standard server Port 502 with MBAP format messages. All

other server Port values use encapsulated Modbus message format

(RTU via TCP).

YES = Use MBAP format messages for all server Port values. RTU via

TCP is not used.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 43 of 158

3.2.4 MBTCP Client x Commands

In order to interface the MVI69E-MBTCP module with Modbus server devices, you must create
a command list. The commands in the list specify the server device to be addressed, the
function to be performed (read or write), the data area in the device to interface with, and the
registers in the internal database to be associated with the device data.

Each of the 20 Client Command Lists supports up to 16 commands each. The command list is
processed from top (Command #0) to bottom.

Read commands are executed without condition. You can set write commands to execute only if
the data in the write command changes (Conditional Enable). If the register data values in the
command have not changed since the command was last issued, the command is not executed.
You can use this feature to optimize network performance.

Note: The first command in the Client x Command list cannot be disabled.

The MBTCP Modbus client (and server) communication drivers support several data read and
write commands. When you configure a command, you need to consider the type of data (bit,
16-bit integer, 32-bit float, etc), and the level of Modbus support in the server equipment.

In the ProSoft Configuration Builder tree view, double-click the MBTCP CLIENT X COMMANDS
icon.

Parameter Value Description

Enable Disable, Enable,

Conditional,

Bit/Word Override,

Float Override

Specifies whether the command is executed and under what conditions.

DISABLE (0) = The command is disabled and is not executed in the

normal polling sequence.

ENABLE (1) = The command is executed each scan of the command list

if the Poll Interval (see below) is set to zero. If the Poll Interval is set to a

nonzero value, the command is executed when the interval timer

expires.

CONDITIONAL (2) = For write commands only. The command executes

only if the internal data associated with the command changes.

BIT/WORD OVERRIDE (3) = For read commands only. If a command error

occurs, the module overrides the associated database area with the

Override Value Upon Error parameter value.

FLOAT OVERRIDE (4) = For read commands only. If a command error

occurs, the module overrides the associated database area (2x word

count) with the Override Value Upon Error parameter value.

 Internal Address 0 to 9999

(word-level)

Specifies the module’s internal database register to be associated with

the command.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 44 of 158

or

0 to 159,999

(bit-level)

For Modbus Function Codes 3, 4, 6, or 16, the allowable range is 0 to

9999.

For Modbus Function Codes 1, 2, 5, or 15, the allowable range is 0 to

159,999. Note: This bit address range is available with ProSoft

Configuration Builder (PCB) v4.6 or later. Previous versions have a

range of 0 to 65535.

If the command is a read function, the data read from the server device

is stored beginning at the module’s internal database register value

entered in this field. This register value must be in the Read Data area

of the module’s memory, defined by the Read Register Start and Read

Register Count parameters in the Module section.

If the command is a write function, the data to be written to the server

device is sourced beginning from the module’s internal database register

specified. This register value must come from the Write Data area of the

module’s memory, defined by the Write Register Start and Write Register

Count parameters in the Module section.

Poll Interval 0 to 65535

(1/10 second)

Specifies the minimum interval between executions of continuous

commands (Enable code = 1).

Example: The parameter is entered in 1/10th of a second. Therefore, if a

value of 100 is entered, the command executes no more frequently than

every 10 seconds. When the command reaches the top of the command

queue and 10 seconds has not elapsed, it is skipped until the poll

interval has expired.

Register Count 1 to 125 (words) or

1 to 2000 (coils)

Specifies the number of registers or digital points to be associated with

the command. Modbus Function Codes 5 and 6 ignore this field as they

only apply to a single data point.

For Modbus Function Codes 1, 2, and 15, this parameter sets the

number of single bit digital points (inputs or coils) to be associated with

the command. Note: Up to 2000 coils are supported for Modbus

Function Codes 1 and 2. Up to 1968 coils are supported for Modbus

Function Code 15.

For Modbus Function Codes 3, 4, and 16, this parameter sets the

number of 16-bit registers to be associated with the command.

Swap Code No Change,

Word Swap,

Word and Byte

Swap,

Byte Swap

Defines if the data received from the Modbus server is to be ordered

differently than received from the server device. This parameter is

helpful when dealing with floating-point or other multi-register values, as

there is no standard method of storing these data types in server

devices. You can set this parameter to order the register data received

in an order useful by other applications.

NO CHANGE = No change is made in the byte ordering (ABCD = ABCD)

WORD SWAP = The words are swapped (ABCD= CDAB)

WORD AND BYTE SWAP = The words are swapped, then the bytes in each

word are swapped (ABCD=DCBA)

BYTE SWAP = The bytes in each word are swapped (ABCD=BADC)

Note: Each pair of characters is a byte (example: AB and CD). Two

pairs of characters is a 16-bit register (example: ABCD).

Node IP Address xxx.xxx.xxx.xxx Specifies the IP address of the target device being addressed by the

command.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 45 of 158

Service Port 1 to 65535 Use a value of 502 when addressing Modbus TCP/IP servers which are

compatible with the Schneider Electric MBAP specifications (most

devices).

If a server implementation supports another service port, enter the value

here. Service Port 2000 is common for encapsulated format messages.

Slave Address 0 to 255 Mainly used for Modbus TCP/IP to serial conversion. This specifies the

Modbus slave node address on the serial network to be considered.

If a Modbus TCP/IP server device does not have or need a slave

address, use a value of ‘1’.

If you set the value to zero, the command is a broadcast message on

the network. The Modbus protocol permits broadcast commands for

write operations. Do not use this node address for read operations.

Modbus Function 1, 2, 3, 4, 5, 6, 15,

16

Specifies the Modbus function to be executed by the command. These

function codes are defined in the Modbus protocol.

1 = Read Coil Status (0xxxx)

2 = Read Input Status (1xxxx)

3 = Read Holding Registers (4xxxx)

4 = Read Input Registers (3xxxx)

5 = Force (Write Single) Coil (0xxxx)

6 = Force (Write Single) Holding Register (4xxxx)

15 = Preset (Write) Multiple Coils (0xxxx)

16 = Preset (Write) Multiple Registers (4xxxx)

MB Address in

Device

0 to 65535 Specifies the register or digital point address offset within the Modbus

server device. The MBTCP client reads or writes from/to this address

within the server.

Refer to the documentation of each Modbus server device for their

register and digital point address assignments.

Note: The value you enter here does not need to include the "Modbus

Prefix" addressing scheme. Also, this value is an offset of the zero-

based Modbus addressing scheme.

Example: When using a Modbus Function Code 3 to read from address

40010 in the server, enter a value of ‘9’ for this parameter. The firmware

(internally) adds a ‘40001’ offset to the value entered. This is the same

for all Modbus addresses (0x, 1x, 3x, 4x).

Override Value

Upon Error

 This parameter is only applicable when the Enable parameter is 3

(Bit/Word Override) or 4 (Float Override).

If an error occurs associated with a read command, the module

automatically populates the associated database area with this override

value.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 46 of 158

3.2.5 Ethernet 1

This section defines the permanent IP address, Subnet Mask, and Gateway of the module.

In the ProSoft Configuration Builder tree view, double-click the ETHERNET 1 icon.

Parameter Description

IP Address Unique IP address assigned to the module

Netmask Subnet mask of module

Gateway Gateway (if used)

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 47 of 158

3.2.6 Static ARP Table

This section defines a list of static IP addresses that the module uses when an ARP (Address
Resolution Protocol) is required. The module accepts up to 40 static IP/MAC Address data sets.

Use the Static ARP table to reduce the amount of network traffic by specifying IP addresses and
their associated MAC (hardware) addresses that the MVI69E-MBTCP module communicates
with regularly.

In ProSoft Configuration Builder tree view, double-click the STATIC ARP TABLE icon.

Parameter Value Description

IP Address xxx.xxx.xxx.xxx This table contains a list of static IP addresses that the module uses

when an ARP is required. The module accepts up to 40 static

IP/MAC address data sets.

Important: If the device in the field is changed, this table must be

updated to contain the new MAC address for the device and

downloaded to the module. If the MAC is not changed, there is no

communication with the module.

Hardware MAC

Address

FF.FF.FF.FF.FF.FF This table contains a list of static MAC addresses that the module

uses when an ARP is required. The module accepts up to 40 static

IP/MAC address data sets.

Important: If the device in the field is changed, this table must be

updated to contain the new MAC address for the device and

downloaded to the module. If the MAC is not changed, there is no

communication with the module.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 48 of 158

3.3 Downloading the Configuration File to the Processor

1 In the ProSoft Configuration Builder tree view, right-click the module icon and then click
DOWNLOAD FROM PC TO DEVICE.

2 In the Download Configuration File dialog box, click RSWHO.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 49 of 158

3 Browse to, and then click the CompactLogix processor and click OK.

Note: DF1 serial download via CIPConnect is not supported. Only use Ethernet or EtherNet/IP drivers via
RSWho.

4 Notice the CIPConnect path has been updated in the Download Configuration File dialog
box. Click TEST CONNECTION to verify the path is active and can successfully connect to
the processor.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 50 of 158

5 When ready, click DOWNLOAD to download the configuration file to the processor.
Following the download process, the module is automatically rebooted.

6 After rebooting, the ladder logic sends the configuration data from the processor to the
module. When that is complete, the module starts Modbus communications.

3.4 Uploading the Configuration File from the Processor

1 In the ProSoft Configuration Builder tree view, right-click the MVI69E-MBTCP icon and
choose UPLOAD FROM DEVICE TO PC.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 51 of 158

2 In the Upload Configuration File dialog box, the CIPConnect path should be constructed
if you have previously downloaded the configuration file from the same PC. If not, click
RSWHO, browse to, and then select the CompactLogix Processor, and click OK.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Configuring the MVI69E-MBTCP Using PCB User Manual

ProSoft Technology, Inc. Page 52 of 158

3 Click TEST CONNECTION to verify the path is active and can successfully connect to the
processor.

4 When ready, click UPLOAD. When upload is complete, click CLOSE.

5 PCB now displays the uploaded configuration file.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 53 of 158

4 Using Controller Tags

Ladder logic is required for managing communication between the MVI69E-MBTCP module and
the CompactLogix processor. The ladder logic handles tasks such as:

• Module backplane data transfer

• Special block handling

• Status data receipt

Additionally, a power-up handler may be needed to initialize the module’s database and may
clear some processor fault conditions.

The sample Import Rung with Add-On Instruction is extensively commented to provide
information on the purpose and function of each user-defined data type and controller tag. For
most applications, the Import Rung with Add-On Instruction works without needing any
modification.

4.1 Controller Tags

Data related to the MVI69E-MBTCP is stored in the ladder logic in variables called controller
tags. Individual controller tags can be grouped into collections of controller tags called controller
tag structures. A controller tag structure can contain any combination of:

• Individual controller tags

• Controller tag arrays

• Lower-level controller tag structures

The controller tags for the module are pre-programmed into the Add-On Instruction Import Rung
ladder logic. After you import the Add-On Instruction, you can find the controller tags in the
Controller Tags subfolder, located in the Controller folder in the Controller Organizer pane of the
main Studio 5000 window.

This controller tag structure is arranged as a tree structure. Individual controller tags are found
at the lowest level of the tree structure. Each individual controller tag is defined to hold data of a
specific type, such as integer or floating-point data. Controller tag structures are declared with
user-defined data types (UDTs), which are collections of data types.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 54 of 158

4.1.1 MVI69E-MBTCP Controller Tags

The main controller tag structure, MBTCP, is broken down into five lower-level controller tag
structures.

The five lower-level controller tag structures contain other controller tags and controller tag
structures. Click the [+] sign next to any controller tag structure to expand it and view the next
level in the structure.

For example, if you expand the MBTCP.DATA controller tag structure, you see that it contains
two controller tag arrays, MBTCP.DATA.ReadData and MBTCP.DATA.WriteData, which are
600-element integer arrays by default.

The controller tags in the Add-On Instruction are commented in the DESCRIPTION column.

Notice that the DATA TYPE column displays the data types used to declare each controller tag,
controller tag array or controller tag structure. Individual controller tags are declared with basic
data types, such as INT and BOOL. Controller tag arrays are declared with arrays of basic data
types. Controller tag structures are declared with user-defined data types (UDTs).

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 55 of 158

4.2 User-Defined Data Types (UDTs)

User-defined data types (UDTs) allow you to organize collections of data types into groupings.
You can use these groupings, or data type structures, to declare the data types for controller tag
structures. Another advantage of defining a UDT is that you may reuse it in other controller tag
structures that use the same data types.

The Add-On Instruction Import Rung ladder logic for the module has pre-defined UDTs. You can
find them in the User-Defined subfolder, located in the Data Types folder in the Controller
Organizer pane of the main RSLogix window. Like the controller tags, the UDTs are organized
in a multiple-level tree structure.

4.2.1 MVI69E-MBTCP User-Defined Data Types

Multiple UDTs are defined for the MVI69E-MBTCP Add-On Instruction.

The main UDT, MBTCPMODULEDEF, contains all the data types for the module and was used
to create the main controller tag structure, MBTCP. There are five UDTs one level below
MBTCPMODULEDEF. These lower-level UDTs were used to create the MBTCP.CONFIG,
MBTCP.DATA, MBTCP.CONTROL, MBTCP.STATUS, and MBTCP.UTIL controller tag
structures.

Click the [+] signs to expand the UDT structures and view lower-level UDTs.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 56 of 158

For example, if you expand MBTCP.DATA, it contains two UDTs, ReadData and WriteData.
Both of these are 600-element integer arrays by default.

Notice that these UDTs are the data types used to declare the MBTCP.DATA.ReadData and
MBTCP.DATA.WriteData controller tag arrays.

The UDTs are commented in the DESCRIPTION column.

Tip: If more than 600 words of Read or Write Data are needed, the MBTCP.DATA.ReadData and
MBTCP.DATA.WriteData controller tag arrays can be expanded. Simply edit the size of the ReadData or WriteData
integer array in the Data Type column of the MBTCPDATA UDT. In the example below, the ReadData array size has
been changed to 2000. Save and download the ladder program for this change to take effect.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 57 of 158

4.3 MBTCP Controller Tag Overview

Use controller tags to:

• View the read and write being transferred between the module and the processor.

• View status data for the module.

• Set up and trigger special functions.

• Initiate module restarts (Warm Boot or Cold Boot)

Tag Name Description

MBTCP.CONFIG Configuration information

MBTCP.DATA MBTCP input and output data transferred between the processor and the module

MBTCP.CONTROL Governs the data movement between the PLC rack and the module

MBTCP.STATUS Status information

MBTCP.UTIL Generic tags used for internal ladder processing (DO NOT MODIFY)

The following sections describe each of these controller tag structures in more detail.

4.3.1 MBTCP.CONFIG

When ProSoft Configuration Builder (PCB) downloads the configuration file from the PC to the
processor, the processor stores the configuration file data in the MBTCP.CONFIG.FileData
array. Its CRC is also included in this array.

You cannot edit this array directly. You must use PCB to edit the module configuration since
PCB calculates a unique CRC to protect data integrity. Any change to the configuration
parameters directly in this array do not match the calculated CRC.

Tag Name Description

MBTCP.CONFIG.FileData

This parameter contains the MBTCP configuration data after it has been

downloaded from PCB. It is displayed in ASCII format.

Note: MBTCP configuration changes cannot be made directly in this array;

the configuration must be downloaded with PCB.

MBTCP.CONFIG.FileSize Configuration file size (MBTCP.CONFIG.FileData array) in bytes.

MBTCP.CONFIG.FileCRC32 CRC checksum of the configuration file stored in the array.

MBTCP.CONFIG.FileStatus Configuration file status. 0 = No file present, 1 = File present

4.3.2 MBTCP.DATA

This array contains the Read Data and Write Data arrays for processor-to-module
communication.

Tag Name Description

MBTCP.DATA.ReadData Data area copied from the module to the processor. This array stores the

Modbus data coming into the module from the Modbus network.

MBTCP.DATA.WriteData Data area copied from the processor to the module. This array stores the

outgoing data sent from the module to the Modbus network.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 58 of 158

4.3.3 MBTCP.CONTROL

This array handles special tasks requested by the processor.

4.3.3.1 MBTCP.CONTROL

This array allows the processor to dynamically enable configured commands for execution.

Tag Name Range Description

MBTCP.CONTROL.

CommandControl.Trigger

0 or 1 Command Control: Disable = 0, Enable = 1

MBTCP.CONTROL.

CommandControl.CommandID

1 to 16 This value represents the quantity of commands to be

requested in the Command Control block (1 to 16). The

ladder logic uses this value to generate the Command

Control Block ID. The rightmost digits of the Command

Control Block ID are the number of commands requested

by the block.

MBTCP.CONTROL.

CommandControl.ClientID

0 to 19 Client ID associated with the command to be executed.

There are 20 MBTCP clients available.

MBTCP.CONTROL.

CommandControl.CommandIndex

0 to 15 This array stores the command index within the client ID. It

can be determined by command row number minus 1. Up

to 16 command indexes can be stored here

MBTCP.CONTROL.

CommandControl.CmdsAddedToQue

 This value is returned from the module. This is the number

of commands added to the queue.

-1 = Client not enabled and active.

-2 = Client index not valid.

MBTCP.CONTROL.

CommandControl.CmdInQue

 Number of commands in the queue waiting to be executed

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 59 of 158

4.3.3.2 MBTCP.CONTROL.EventCommand_DBData

This array allows the processor to dynamically build Modbus commands with data associated to
the module’s database. This feature is meant for periodic execution such as resetting clock and
zeroing-out counters.

Tag Name Range Description

MBTCP.CONTROL.EventCommand_DB

Data.Trigger

0 or 1 Toggle to send Event Command.

0 = Disable, 1 = Enable

MBTCP.CONTROL.EventCommand_DB

Data.ClientID

0 to 19 Client ID associated with the command to be executed

MBTCP.CONTROL.EventCommand_DB

Data.ServerIPaddress

xxx.xxx.xxx.x

xx

IP address of target Modbus server

MBTCP.CONTROL.EventCommand_DB

Data.ServicePort

502 or 2000 Service port of target Modbus server

MBTCP.CONTROL.EventCommand_DB

Data.SlaveAddress

1 to 255 Slave address of target Modbus TCP/IP to serial device,

if applicable

MBTCP.CONTROL.EventCommand_DB

Data.InternalDBaddress

0 to 9999

(word-level)

or

0 to 159,999*

(bit-level)

Specifies the module’s internal database register to be

associated with the command.

For Modbus Function Codes 3, 4, 6, or 16, the allowable

range is 0 to 9999.

For Modbus Function Codes 1, 2, 5, or 15, the allowable

range is 0 to 159,999. Note: This bit address range is

available with ProSoft Configuration Builder (PCB)

v4.6.0.0 or later. Previous versions have a range of 0 to

65535.

MBTCP.CONTROL.EventCommand_DB

Data.RegisterCount

1 to 125

(words)

or

1 to 2000

(coils)

Specifies the number of registers or digital points to be

associated with the command. Modbus Function Codes

5 and 6 ignore this field as they only apply to a single

data point.

MBTCP.CONTROL.EventCommand_DB

Data.SwapCode

0, 1, 2, 3 Specifies if the data received from the Modbus server is

to be ordered differently than received from the server

device.

This parameter is helpful when dealing with floating-

point or other multi-register values, as there is no

standard method of storage of these data types in

server devices.

MBTCP.CONTROL.EventCommand_DB

Data.ModbusFC

1, 2, 3, 4, 5,

6, 15, 16

Specifies the Modbus function to be executed by the

command.

MBTCP.CONTROL.EventCommand_DB

Data.DeviceModbusAddress

0 to 9999 Specifies the register or digital point address offset

within the Modbus server device. The MBTCP client

reads or writes from/to this address within the server.

MBTCP.CONTROL.EventCommand_DB

Data.StatusReturned

 0 = Fail

 1 = Success

-1 = Client is not Enabled and Active

MBTCP.CONTROL.EventCommand_DB

Data.CmdInQue

 Number of commands in the queue waiting to be

executed

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 60 of 158

4.3.3.3 MBTCP.CONTROL.EventCommand_PLCData

This array allows the processor to dynamically build Modbus commands with PLC processor
data. This feature is meant for periodic execution such as resetting the clock and zeroing-out
counters.

Tag Name Range Description

MBTCP.CONTROL.EventCommand_PLC

Data.Trigger

0 or 1 Toggle to send Event Command.

0 = Disable, 1 = Enable

MBTCP.CONTROL.EventCommand_PLC

Data.ClientID

0 to 19 Client ID associated with the command to be executed

MBTCP.CONTROL.EventCommand_PLC

Data.ServerIPaddress

xxx.xxx.xxx.xx

x

IP address of target Modbus server

MBTCP.CONTROL.EventCommand_PLC

Data.ServicePort

502 or 2000 Service port of target Modbus server

MBTCP.CONTROL.EventCommand_PLC

Data.SlaveAddress

1 to 255 Slave address of target Modbus TCP/IP to serial

device, for backwards compatibility

MBTCP.CONTROL.EventCommand_PLC

Data.ModbusFunctionCode

1, 2, 3, 4, 5, 6,

15, 16

Specifies the Modbus function to be executed by the

command.

MBTCP.CONTROL.EventCommand_PLC

Data.DeviceDBAddress

0 to 9999 Specifies the register or digital point address offset

within the Modbus server device. The MBTCP client

reads or writes from/to this address within the server.

MBTCP.CONTROL.EventCommand_PLC

Data.PointCount

1 to 125

(words)

or

1 to 2000

(coils)

Specifies the number of registers or digital points to be

associated with the command. Modbus Function

Codes 5 and 6 ignore this field as they only apply to a

single data point.

MBTCP.CONTROL.EventCommand_PLC

Data.Data

 Data values associated with the command

MBTCP.CONTROL.EventCommand_PLC

Data.ErrorStatus

 Command status after execution

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 61 of 158

4.3.3.4 MBTCP.CONTROL.EventSequenceCommand

This tag array contains the values needed to build one Modbus TCP/IP command, have it sent
to a specific client on the module, and control the processing of the returned response block.

Tag Name Range Description

MBTCP.CONTROL.EventSequenceCom

mand.Trigger

0 or 1 Toggle to send Event Sequence Command.

0 = Disable, 1 = Enable

MBTCP.CONTROL.EventSequenceCom

mand.ClientID

0 to 19 Client ID associated with the command to be executed

MBTCP.CONTROL.EventSequenceCom

mand.ServerIPaddress

xxx.xxx.xxx.x

xx

IP address of target Modbus server

MBTCP.CONTROL.EventSequenceCom

mand.ServicePort

502 or 2000 Service port of target Modbus server

MBTCP.CONTROL.EventSequenceCom

mand.SlaveAddress

1 to 255 Slave address of target Modbus TCP/IP to serial

device, if applicable

MBTCP.CONTROL.EventSequenceCom

mand.InternalDBaddress

0 to 9999

(word-level)

or

0 to 159,999

(bit-level)

Specifies the module’s internal database register to be

associated with the command.

For Modbus Function Codes 3, 4, 6, or 16, the allowable

range is 0 to 9999.

For Modbus Function Codes 1, 2, 5, or 15, the allowable

range is 0 to 159,999. Note: This bit address range is

available with ProSoft Configuration Builder (PCB)

v4.6.0.0 or later. Previous versions have a range of 0 to

65535.

MBTCP.CONTROL.EventSequenceCom

mand.RegisterCount

1 to 125

(words)

or

1 to 2000

(coils)

Specifies the number of registers or digital points to be

associated with the command. Modbus Function Codes

5 and 6 ignore this field as they only apply to a single

data point.

MBTCP.CONTROL.EventSequenceCom

mand.SwapCode

0, 1, 2, 3 Specifies if the data received from the Modbus server is

to be ordered differently than received from the server

device.

This parameter is helpful when dealing with floating-

point or other multi-register values, as there is no

standard method of storage of these data types in

server devices.

MBTCP.CONTROL.EventSequenceCom

mand.ModbusFC

1, 2, 3, 4, 5,

6, 15, 16

Specifies the Modbus function to be executed by the

command.

MBTCP.CONTROL.EventSequenceCom

mand.DeviceModbusAddress

0 to 9999 Specifies the register or digital point address offset

within the Modbus server device. The MBTCP client

reads or writes from/to this address within the server.

MBTCP.CONTROL.EventSequenceCom

mand.SequenceNumber

 Event Sequence Command Number

MBTCP.CONTROL.EventSequenceCom

mand.StatusReturned

 Event Sequence Command Returned

 0 = Fail

 1 = Success

-1 = Client disabled /inactive

MBTCP.CONTROL.EventSequenceCom

mand.CmdInQue

 Number of Event Sequence commands in queue

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 62 of 158

4.3.3.5 MBTCP.CONTROL.Time

This array allows the processor to get or set module time.

Tag Name Range Description

MBTCP.CONTROL.Time.SetTime 0 or 1 Sends the PLC time to the module

0 = Disable, 1 = Enable

MBTCP.CONTROL.Time.GetTime 0 or 1 Retrieves the time from the module to PLC

0 = Disable, 1 = Enable

MBTCP.CONTROL.Time.Year 0 to 9999 Four digit year value. Example: 2014

MBTCP.CONTROL.Time.Month 1 to 12 Month

MBTCP.CONTROL.Time.Day 1 to 31 Day

MBTCP.CONTROL.Time.Hour 0 to 23 Hour

MBTCP.CONTROL.Time.Minute 0 to 59 Minute

MBTCP.CONTROL.Time.Second 0 to 59 Second

MBTCP.CONTROL.Time.Milliseconds 0 to 999 Millisecond

MBTCP.CONTROL.Time.Error 0 or -1 0 = OK

-1 = Error present

4.3.3.6 MBTCP.CONTROL.ClientServerControl

This array allows the control and retrieval of driver command active bits.

Tag Name Range Description

MBTCP.CONTROL.ClientServerControl.

Trigger

0 or 1 Toggle client/server control

0 = Disable, 1 = Enable

MBTCP.CONTROL.ClientServerControl.

ActiveServer

0 or 1 Server active state:

0 = Disable, 1 = Enable

MBTCP.CONTROL.ClientServerControl.

ActiveClient_0to15

 Client 0 to 15 bit map for active status of clients

MBTCP.CONTROL.ClientServerControl.

ActiveClient_16to19

 Client 16 to 19 bit map for active status of clients

MBTCP.CONTROL.ClientServerControl.

ActiveClientCmd[x]

0 or 1 Client 0 to 19 command active bits. One word for each

client. Each bit is a command.

0 = Disable, 1 = Enable

MBTCP.CONTROL.ClientServerControl.

GetStatus

0 or 1 Toggle request for status

0 = Disable, 1 = Enable

MBTCP.CONTROL.ClientServerControl.

ServerStatus

0 or 1 Server active state

0 = Disabled, 1 = Enabled

MBTCP.CONTROL.ClientServerControl.

Client_0to15Status

 Client 0 to 15 bit map for active status of clients

MBTCP.CONTROL.ClientServerControl.

Client_16to19Status

 Client 16 to 19 bit map for active status of clients

MBTCP.CONTROL.ClientServerControl.

ClientCmdStatus[x]

0 or 1 Clients 0 to 19 command active bits. One word for

each client. Each bit is a command.

0 = Disabled, 1 = Enabled

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 63 of 158

4.3.3.7 MBTCP.CONTROL.ResetStatus

This array resets the module along with client and server status tags.

Tag Name Range Description

MBTCP.CONTROL.ResetStatus.

Trigger

0 or 1 Toggle reset control

0 = Disable, 1 = Enable

MBTCP.CONTROL.ResetStatus.

Module

 Reset Module status (0 = No, else yes with any non-

zero value)

MBTCP.CONTROL.ResetStatus.

Server

 Reset server status (0 = No, else yes with any non-

zero value)

MBTCP.CONTROL.ResetStatus.

Client

 Reset client status (0 = No, else yes with any non-

zero value)

4.3.3.8 MBTCP.CONTROL.EventSequenceCounts

This tag triggers the counting of the event sequence operation.

Tag Name Range Description

MBTCP.CONTROL.

EventSequenceCounts

0 or 1 Triggers the counting of event sequence

0 = Disable, 1 = Enable

4.3.3.9 MBTCP.CONTROL.EventSequenceStatus

This tag triggers the request for the event sequence status.

Tag Name Range Description

MBTCP.CONTROL.

EventSequenceStatus

0 or 1 Triggers event sequence status read

0 = Disable, 1 = Enable

4.3.3.10 MBTCP.CONTROL.GetGeneralStatus

This tag triggers the request for the general status of the module.

Tag Name Range Description

MBTCP.CONTROL.

GetGeneralStatus

0 or 1 Triggers general status read

0 = Disable, 1 = Enable

4.3.3.11 MBTCP.CONTROL.GetEventDataStatus

This tag triggers the request of the event status.

Tag Name Range Description

MBTCP.CONTROL.

GetEventDataStatus

0 or 1 Triggers event status read

0 = Disable, 1 = Enable

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 64 of 158

4.3.3.12 MBTCP.CONTROL. ColdBoot

This tag triggers the processor to Coldboot the module (full reboot).

Tag Name Range Description

MBTCP.CONTROL.ColdBoot 0 or 1 Triggers a cold boot of the module

0 = Disable, 1 = Enable

4.3.3.13 MBTCP.CONTROL.WarmBoot

This tag triggers the processor to Warmboot the module (driver reboot).

Tag Name Range Description

MBTCP.CONTROL.WarmBoot 0 or 1 Triggers a warm boot the module

0 = Disable, 1 = Enable

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 65 of 158

4.3.4 MBTCP.STATUS

This array contains the status information of the module.

4.3.4.1 MBTCP.STATUS.Block

This array contains block status.

Tag Name Description

MBTCP.STATUS.Block.Read Total number of read blocks transferred from the module to the processor

MBTCP.STATUS.Block.Write Total number of write blocks transferred from the processor to the module

MBTCP.STATUS.Block.Parse Total number of blocks successfully parsed that were received from the

processor

MBTCP.STATUS.Block.Event Total number of event command blocks received from the processor

MBTCP.STATUS.Block.Cmd Total number of command blocks received from the processor

MBTCP.STATUS.Block.Err Total number of block transfer errors recognized by the module

4.3.4.2 MBTCP.STATUS.ClientStatus

This array contains the status of a specific MBTCP client (0 to 19).

Tag Name Description

MBTCP.STATUS.ClientStatus.

Request

Initiates request for Client Status block from module when set to 1

MBTCP.STATUS.ClientStatus.

ClientID

Specifies Client (0 to 19) to request status data from

MBTCP.STATUS.ClientStatus.

CommandRequests

Total number of requests made from this port to server devices on the network

MBTCP.STATUS.ClientStatus.

CommandResponses

Total number of server response messages received on the port

MBTCP.STATUS.ClientStatus.

CommandErrors

Total number of command errors processed on the port. These errors could be due

to a bad response or command

MBTCP.STATUS.ClientStatus.

Requests

Total number of messages sent out of the port

MBTCP.STATUS.ClientStatus.

Responses

Total number of messages received on the port

MBTCP.STATUS.ClientStatus.

ErrorsReceived

Total number of message errors received on the port

MBTCP.STATUS.ClientStatus.

ErrorsSent

Total number of message errors sent out of the port

MBTCP.STATUS.ClientStatus.

CurrentError

Most recent error code recorded for the client

MBTCP.STATUS.ClientStatus.

LastError

Previous most recent error code recorded for the client

MBTCP.STATUS.ClientStatus.

CmdErrors[x]

Command error code for each command (0-15) on the specified client's command

list

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 66 of 158

4.3.4.3 MBTCP.STATUS.EventSeqStatus

This array contains the status of the event command queue.

Tag Name Description

MBTCP.STATUS.EventSeqStatus.

ClientID

Specifies Client (0 to19) to request event status data from

MBTCP.STATUS.EventSeqStatus.

MessageCount

Number of event sequence messages in block (0 to 15)

MBTCP.STATUS.EventSeqStatus.

SeqNum_RetErrCode[x]

Sequence number returned error code

4.3.4.4 MBTCP.STATUS.EventSeqCounts

This array indicates the number of commands waiting in the command queue.

Tag Name Description

MBTCP.STATUS.EventSeqCounts.

ClientCmdCount_EventSeqMessage

Event command quantity waiting in queue. There are two

bytes of status data per client. See below for details.

Byte 1: Number of Event sequence commands for which status has not yet been retrieved (up
to 15). This corresponds to the MNETC.STATUS.EventSeqCmdPending.Client[x]_QueueCount
controller tag.

Byte 2: Total number of commands waiting in the command queue. This includes Event
Commands, Event Commands with Sequence Numbers, and Command Control messages.
This corresponds to the MBTCP.STATUS.EventSeqStatus.MessageCount controller tag.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 67 of 158

4.3.4.5 MBTCP.STATUS.GeneralStatus

This array contains the general status of the module including firmware revision and general
communication status.

Tag Name Description

MBTCP.STATUS.GeneralStatus.Ex

pectedWriteBlock

Contains the next write block ID number

MBTCP.STATUS.GeneralStatus.Pr

ogramScanCount

Program cycle counter – increments each time a complete program cycle occurs in

the module

MBTCP.STATUS.GeneralStatus.Pr

oductCode

Product code

MBTCP.STATUS.GeneralStatus.Pr

oductVersion

Firmware revision level number

MBTCP.STATUS.GeneralStatus.Op

eratingSystem

Operating level number

MBTCP.STATUS.GeneralStatus.Ru

nNumber

Run number

MBTCP.STATUS.GeneralStatus.Re

adBlockCount

Total number of read blocks transferred from the module to the processor

MBTCP.STATUS.GeneralStatus.Wri

teBlockCount

Total number of write blocks transferred from the processor to the module

MBTCP.STATUS.GeneralStatus.Pa

rseBlockCount

Total number of blocks successfully parsed that were received from the processor

MBTCP.STATUS.GeneralStatus.C

mdEventBlockCount

Total number of event command blocks received from the processor

MBTCP.STATUS.GeneralStatus.C

mdBlockCount

Total number of command blocks received from the processor

MBTCP.STATUS.GeneralStatus.

ErrorBlockCount

Total number of block transfer errors recognized by the module

MBTCP.STATUS.GeneralStatus.

Client0CmdExecutionWord

Each bit in this word is used to enable/disable the commands for client 0.

0 = Disable, 1 = Enable

MBTCP.STATUS.GeneralStatus.

Client1to19CmdExecutionWord

Each bit in each of the 19 words is used to enable/disable the commands for clients

1 to 19.

0 = Disable, 1 = Enable

MBTCP.STATUS.GeneralStatus.

EventSeqReady

Bit mapped (1 bit per client 0 to 19)

Bit = 0, no event sequence status data ready

Bit = 1, event sequence status data ready

MBTCP.STATUS.GeneralStatus.

MNetRequestCount

Increments each time an encapsulated Modbus TCP/IP (Service port 2000) request

is received.

MBTCP.STATUS.GeneralStatus.

MNetResponseCount

Increments each time an encapsulated Modbus TCP/IP (Service port 2000)

response message is sent.

MBTCP.STATUS.GeneralStatus.

MnetErrorSent

Increments each time an error is sent from a server on service port 2000.

MBTCP.STATUS.GeneralStatus.

MNETErrorReceived

Increments each time an error is received from a server on service port 2000.

MBTCP.STATUS.GeneralStatus.

MBAPRequestCount

Increments each time a MBAP (Service port 502) request is received.

MBTCP.STATUS.GeneralStatus.

MBAPResponseCount

Increments each time a MBAP (Service port 502) response message is sent.

MBTCP.STATUS.GeneralStatus.

MBAPErrorSent

Increments each time an error is sent from the server on service port 502.

MBTCP.STATUS.GeneralStatus.

MBAPErrorReceived

Increments each time an error is received from a server on service port 502.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 68 of 158

4.3.4.6 MBTCP.STATUS.GetEventDataStatus

This array contains the status of the event command last executed.

Tag Name Description

MBTCP.STATUS.GetEventDataStatus

.ClientRecordsCount

Number of clients contained in block (0 to 19)

MBTCP.STATUS.GetEventDataStatus

.Status

Two words per client.

Word 1 = Client (0 to19)

Word 2 = Error code for last executed command for corresponding client

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 69 of 158

4.3.5 MBTCP.UTIL

The array is used for internal ladder processing. It should not be modified.

Tag Name Description

MBTCP.UTIL.ReadDataSizeGet Holds Read Data array size

MBTCP.UTIL.WriteDataSizeGet Holds Write Data array size

MBTCP.UTIL.ReadDataBlkCount Number of Read Data blocks – this value is the Read Register Count

divided by the Block Transfer Size

MBTCP.UTIL.WriteDataBlkCount Number of Write Data blocks – this value is the Write Register Count

divided by the Block Transfer Size

MBTCP.UTIL.RBTSremainder Remainder from the Read Register Count divided by the Block Transfer

Size

MBTCP.UTIL.WBTSremainder Remainder from the Write Register Count divided by the Block Transfer

Size

MBTCP.UTIL.BlockIndex Computed block offset for data

MBTCP.UTIL.LastRead Latest Read Block ID received from the module

MBTCP.UTIL.LastWrite Latest Write Block ID to be sent to the module

MBTCP.UTIL.LastWriteInit Latest Write Block ID used during initialization

MBTCP.UTIL.ConfigFile [] Array Holds variables for configuration file transfer

MBTCP.UTIL.ConfigFile.

WordLength

Length of configuration data to be included in block transfer

MBTCP.UTIL.ConfigFile.

BlockCount

Block transfer count for transferring the whole configuration file from PLC

to the Module

MBTCP.UTIL.ConfigFile.FileOffset Offset in configuration file to use as a starting point for copying over

configuration data

MBTCP.UTIL.ConnectionInputSize Holds size of the Connection Input array

MBTCP.UTIL.BlockTransferSize Size of the backplane transfer blocks

MBTCP.UTIL.SlotNumber Slot number of the module in the rack

MBTCP.UTIL.CommandControl

Pending

Waiting for response from module

MBTCP.UTIL.

CommandControlWriteBlockID

Block ID for Command Control

MBTCP.UTIL.

EventCommandDBDataPending

Keeps an Event Command with Data message from being sent to the

module before the previous Event Command with Data is completed

MBTCP.UTIL.

EventCmd_DBDataBlockID

Block ID of last read block

MBTCP.UTIL.EventCmd_

DBDataWriteEventBlockID

Event response write block ID.

MBTCP.UTIL.EventCmd_

ProcessorDataPending

Event Command Processor Data Pending

0 = Yes, 1 = No

MBTCP.UTIL.EventCmd_

ProcessorDataBlockID

Event Command processor data block ID

MBTCP.UTIL.

EventSeqCmdPending

Event Sequence Command Pending

0 = Yes, 1 = No

MBTCP.UTIL.

EventSeqCmdBlockID

Event Sequence Command Block ID

MBTCP.UTIL.

EventSeqCmdWriteEventBlockID

Event Sequence Command Write Event Block ID

MBTCP.UTIL.PassThrough.

MBControlx [] Array

Holds variables used for processing Pass-Through messages

MBTCP.UTIL.

ClientServerControlBlockID

Client and Server Control Block ID

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Using Controller Tags User Manual

ProSoft Technology, Inc. Page 70 of 158

MBTCP.UTIL.ClientStatusPending Client Status Pending

0 = Yes, 1 = No

MBTCP.UTIL.

ClientStatusWriteBlockID

Client Status Write Block ID

MBTCP.UTIL.

EventSeqStatusPending

Event Sequence Status Pending

0 = Yes, 1 = No

MBTCP.UTIL.

EventSeqStatusWriteBlockID

Event Sequence Status Write Block ID

MBTCP.UTIL.

EventSeqCountsWriteBlockID

Event Sequence Counts Write Block ID

MBTCP.UTIL.

EventSeqCountsPending

Event Sequence Counts Pending

0 = Yes, 1 = No

MBTCP.UTIL.TimeWriteBlockID Time Write Block ID

MBTCP.UTIL.

ResetStatusWriteBlockID

Reset Status Write Block ID

MBTCP.UTIL.

GetEventDataStatusBlockID

Get Event Data Status Block ID

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
MVI69E-MBTCP Backplane Data Exchange User Manual

ProSoft Technology, Inc. Page 71 of 158

5 MVI69E-MBTCP Backplane Data
Exchange

5.1 General Concepts of the MVI69E-MBTCP Data Transfer

The MVI69E-MBTCP module uses ladder logic to communicate with the CompactLogix
processor across the backplane. The ladder logic handles the module data transfer,
configuration data transfer, special block handling, and status data receipt.

The following topics describe several concepts that are important for understanding the
operation of the MVI69E-MBTCP module. This is the order of operations on power-up:

1. The module begins the following logical functions:

• Initialize hardware components

• Initialize CompactLogix backplane driver

• Test and clear all RAM

2. Read configuration from the CompactLogix processor through ladder logic

3. Allocate and initialize Module Register space

4. Enable Modbus TCP/IP Ethernet port

After the module has received the module configuration, the module begins communicating with
other devices on the Modbus network, depending on the Modbus configuration of the module.

5.2 Backplane Data Transfer

The MVI69E-MBTCP module communicates directly over the CompactLogix backplane. Data is
paged between the module and the CompactLogix processor across the backplane using the
module's input and output images. The update frequency of the images is determined by the
scheduled scan rate that you define for the module and the communication load on the module.
Typical updates are in the range of 1 to 10 milliseconds per block of information.

This bi-directional data transfer is accomplished by the module filling in data in the module's
input image to send to the processor. Data in the input image is placed in the Controller Tags in
the processor by the ladder logic. The input image for the module may be set to 62, 122, or 242
words depending on the block transfer size parameter set in the configuration file. This data
area permits fast throughput of data between the module and the processor.

The processor inserts data to the module's output image to transfer to the module. The
module's program extracts the data and places it in the module's internal database. The output
image for the module may be set to 61, 121, or 241 words depending on the block transfer size
parameter set in the configuration file.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
MVI69E-MBTCP Backplane Data Exchange User Manual

ProSoft Technology, Inc. Page 72 of 158

The following illustration shows the data transfer method used to move data between the
CompactLogix processor, the MVI69E-MBTCP module and the Modbus Network.

All data transferred between the module and the processor over the backplane is through the
input and output images. Ladder logic in the CompactLogix processor interfaces the input and
output image data with data defined in the Controller Tags. All data used by the module is
stored in its internal database. This database is defined as virtual MBTCP data tables with
addresses from 0 to the maximum number of points for each data type.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
MVI69E-MBTCP Backplane Data Exchange User Manual

ProSoft Technology, Inc. Page 73 of 158

5.3 Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module’s internal
database (Registers 0 to 9999) and the status data. These data are transferred through read
(input image) and write (output image) blocks. The following topics describe the structure and
function of each block.

5.3.1 Write Block: Request from the Processor to the Module

These blocks of data transfer information from the processor to the module. The structure of the
output image used to transfer this data is shown below:

Offset Description Length (words)

0 Write Block ID 1

1 to (n) Write Data (n)

(n) = 60, 120, or 240 depending on the Block Transfer Size parameter (refer to the configuration file).

The Write Block ID is an index value that determines the location in the module’s database
where the data is placed.

5.3.2 Read Block: Response from the Module to the Processor

These blocks of data transfer information from the module to the processor. The structure of the
input image used to transfer this data is shown below:

Offset Description Length (words)

0 Read Block ID 1

1 Write Block ID 1

2 to (n+1) Read Data (n)

(n) = 60, 120, or 240 depending on the Block Transfer Size parameter (refer to the configuration file).

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
MVI69E-MBTCP Backplane Data Exchange User Manual

ProSoft Technology, Inc. Page 74 of 158

5.3.3 Read and Write Block Transfer Sequences

The Read Block ID is an index value that determines the location where the data is placed in the
processor controller tag array of module read data. The number of data words per transfer
depends on the configured Block Transfer Size parameter in the configuration file (possible
values are 60, 120, or 240).

The Write Block ID associated with the block requests data from the processor. Under normal
program operation, the module sequentially sends read blocks and requests write blocks. For
example, if the application uses three read and two write blocks, the sequence is as follows:

 R1W1 → R2W2 → R3W1 → R1W2 → R2W1 → R3W2 → R1W1 →

This sequence continues until interrupted by other write block numbers sent by the controller or
by a command request from a node on the Modbus network or operator control through the
module’s Configuration/Debug port.

The following example shows a typical backplane communication application.

If the backplane parameters are configured as follows:

Read Register Start: 0

Read Register Count: 480

Write Register Start: 480

Write Register Count: 480

The backplane communication would be configured as follows:

Database address 0 to 479 is continuously transferred from the module to the processor.
Database address 480 to 959 is continuously transferred from the processor to the module.

The Block Transfer Size parameter configures how the Read Data and Write Data areas are
broken down into data blocks (60, 120, or 240).

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
MVI69E-MBTCP Backplane Data Exchange User Manual

ProSoft Technology, Inc. Page 75 of 158

5.3.3.1 If Block Transfer Size = 60

5.3.3.2 If Block Transfer Size = 120

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
MVI69E-MBTCP Backplane Data Exchange User Manual

ProSoft Technology, Inc. Page 76 of 158

5.3.3.3 If Block Transfer Size = 240

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
MVI69E-MBTCP Backplane Data Exchange User Manual

ProSoft Technology, Inc. Page 77 of 158

5.4 Data Flow Between the Module and Processor

The following topics describe the flow of data between the two pieces of hardware
(CompactLogix processor and MVI69E-MBTCP module) and other nodes on the Modbus
network. The module can act as a Modbus TCP/IP client (master), server (slave), or both
simultaneously.

5.4.1 Server Mode

In Server driver mode, the MVI69E-MBTCP module responds to read and write commands
issued by a client on the Modbus network. The following diagram shows the data flow for normal
Server mode.

Step Description

1 Any time the module restarts (boots or reboots), the server port driver receives configuration information

from the MBTCP controller tags. This information configures the Ethernet port and defines Server driver

characteristics. The configuration information may also contain instructions to offset data stored in the

database to addresses different from addresses requested in the received messages.

2 A Modbus client device, such as a Modicon PLC or an HMI application, issues a read or write command

to the module’s IP address. The Server driver qualifies the message before accepting it into the module.

Rejected commands cause an Exception Response.

3 After the module accepts the command, the data is immediately transferred to or from the module’s

internal database. On a read command, the data is read from of the database and a response message

is built. On a write command, the data is written directly into the database and a response message is

built.

4 After Steps 2 and 3 have been completed, either a normal response message or an Exception

Response message is sent to the client.

5 Counters are available in the Status Block to permit the ladder logic program to determine the level of

activity of the Server driver.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
MVI69E-MBTCP Backplane Data Exchange User Manual

ProSoft Technology, Inc. Page 78 of 158

In Server Pass-Through mode, write commands from the client are handled differently than they
are in Normal mode. In Server Pass-Through mode, all write requests are passed directly to the
processor and data is not written directly into the module’s database.

This mode is especially useful when both a Modbus client and the module’s processor logic
need to be able to read and write values to the same internal database addresses.

The following diagram shows the data flow for a server port with Pass-Through enabled:

Step Description

1 Same as normal mode.

2 Same as normal mode.

3 a. In Pass-Through mode, if the Server driver receives a read request, it looks for the data in module’s

internal database, just as it would in Normal mode.

b. The data needed to respond to the read command is retrieved directly from the internal database and

returned to the Server driver so it can build a response message.

c. In Pass-Through mode, if the Server Driver receives a write request, it does not send the data

directly to the module’s internal database. It puts the data to be written into a special Input Image with a

special Block ID code to identify it as a Pass-Through Write Block and substitutes this special block in

place of the next regular Read Data Block. The special block is processed by the ladder logic and the

data to be written is placed into the WriteData controller tag array at an address that corresponds to the

Modbus Address received in the write command.

d. During normal backplane communications, the data from the WriteData array, including the data

updated by the Pass-Through Write Block, is sent to the module’s internal database. This gives the

ladder logic the opportunity to also change the values stored in these addresses, if need be, before they

are written to the database.

Note: The ReadData array is not used in Pass-Through mode.

4 Same as normal mode.

5 Same as normal mode.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
MVI69E-MBTCP Backplane Data Exchange User Manual

ProSoft Technology, Inc. Page 79 of 158

5.4.2 Master Mode

In Client mode, the MVI69E-MBTCP module issues read or write commands to server devices
on the Modbus network. You configure these commands in ProSoft Configuration Builder in the
Client Command List. This list is transferred to the module when the module receives its
configuration from the processor.

The commands can also be issued directly from the CompactLogix processor (Special
Command Blocks).

Command status is returned to the processor for each individual command in the command list.
The location of this command status list in the module’s internal database is user-defined. The
following flow chart and associated table describe the flow of command data into and out of the
module.

Step Description

1 Upon module boot-up, the Client driver obtains configuration data from the MBTCP controller tags. The

configuration data retrieved includes Ethernet configuration and the Client Command List.

Special Commands can be issued directly from the CompactLogix processor using Event Commands

and Command Control. The Client driver uses these command values to determine the types and order

of commands to send to server on the network.

2 After configuration, the Client driver begins transmitting read and/or write commands to server nodes on

the network. If the Client driver is writing data to a server, the data for the write command is retrieved

from the module’s internal database.

3 Once the specified server has successfully processed the command, it returns a response message to

the Client driver for processing.

4 Data received from a server in response to a read command is stored in the module’s internal

database.

5 Status is returned to the processor for each command in the Client Command List.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
MVI69E-MBTCP Backplane Data Exchange User Manual

ProSoft Technology, Inc. Page 80 of 158

Important: Take care when constructing each command in the list to ensure predictable operation of the module. If
two commands write to the same internal database address of the module, the results are invalid. All commands
containing invalid data are ignored by the module.

5.4.2.1 Client Command List

You can define up to 10 Modbus TCP/IP client connections in the MVI69E-MBTCP. Each client
connection can contain up to 16 commands each.

A valid command includes the following items:

• Command enable mode: (0) disabled, (1) continuous, or (2) conditional for write
commands only.

• Source or destination database address: The module’s database address where data is
written or read.

• Count: The number of words or bits to be transferred: up to 125 words for Function
Codes 3, 4, or 16; and up to 2000 bits for Function Codes 1, 2, or 15.

Note: 125 words is the maximum count allowed by the Modbus protocol. Some field devices may support
less than the full 125 words. Check with the device manufacturer for the maximum count supported by the
slave device.

• Server IP Address.

• Modbus Service Port of the server.

• Modbus Function Code: This is the type of command that is issued.

• Source or destination address in the server device.

5.4.2.2 Command Error Codes

As the list is read in from the processor and as the commands are processed, an error value is
maintained in the module for each command. The definition for these command error codes is
listed in Communication Error Codes (page 116). You can view the command error codes
through the Ethernet diagnostics port; refer to Diagnostics and Troubleshooting (page 103).
They can also be transferred from the module’s database to the processor.

To transfer the Command Error List to the processor, set the Command Error Offset parameter
in the port configuration to a module database address that is in the module’s Read Data area.

Note: The Command Error List must be placed in the Read Data area of the database, so it can be transferred to the
processor in the input image. Each MBTCP client must place their own Command Error List within the Read Data
area so that they do not overlap each other.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 81 of 158

6 Legacy Mode

Legacy Mode allows you to replace an existing MVI69-MNET module with the MVI69E-MBTCP.
This feature is only supported with MVI69E-MBTCP firmware version 1.11.001 or later.

The MVI69E-MBTCP module in Legacy Mode is backward compatible with the legacy MVI69-
MNET. This means that you may replace the MVI69-MNET with the MVI69E-MBTCP module in
LEGACY mode without any changes to the existing CompactLogix ladder logic application.

The existing user may also convert the existing MVI69-MNET PCB configuration to the MVI69E-
MBTCP module in Legacy Mode. This conversion procedure is supported by PCB version
4.4.24.20.0302 or later.

6.1 Legacy Mode Configuration

1 Open the MVI69E-MBTCP webpage. For further information, please see Connecting to
the MVI69E-MBTCP Webpage on page 117.

2 Click on the Advanced Settings option.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 82 of 158

3 In the Advanced Settings page, change the LEGACY MODE field to ‘Yes’,
then click on the UPDATE LEGACY MODE button.

4 Confirm the update by clicking OK.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 83 of 158

5 The module will reboot during the update process.

6 Once complete, the homepage displays Legacy Mode – Yes.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 84 of 158

6.2 PCB Configuration

Convert the existing ‘MVI69-MNET’ PCB project to an ‘MVI69E-MBTCP LEGACY’ project.

1 Open the existing MVI69-MNET project in PCB.

2 Right-click on the MVI69-MNET icon and select CONVERT TO ENHANCED MODE.

3 After the conversion, the PCB module parameters are updated.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 85 of 158

6.2.1 Module

This section contains general module configuration parameters, including database allocation
and backplane transfer options.

In the ProSoft Configuration Builder (PCB) tree view, double-click on the MODULE icon.

Parameter Value Description

Error/Status Pointer -1 to 9955 The starting MVI69E-MBTCP database location to store server error/status

data. If a value of -1 is entered, the error/status data will not be used.

This feature returns 8 server error/status values. The descriptions of the

values start at the MBTCP.STATUS.GeneralStatus.MNETRequestCount

controller tag. Refer to the General Status description on page 67 for more

information.

Read Register Start 0 to 9999 Specifies the start of the Read Data area in module memory. Data in

this area is transferred from the module to the processor.

Read Register Count 0 to 10000 Specifies the size of the Read Data area.

Write Register Start 0 to 9999 Specifies the start of the Write Data area in module memory. Data in

this area is transferred from the processor to the module.

Write Register Count 0 to 10000 Specifies the size of the Write Data area.

Failure Flag Count 0 to 65535 Specifies the number of consecutive backplane transfer failures that

can occur before communications are halted.

 0 = Ignore

>0 = Failure count to disable

Block Transfer Size 60, 120 or 240 Specifies the number of words in each block transferred between the

module and processor.

Initialize Output Data Yes or No This parameter determines if the input image data and the module’s

Read Register Data values are initialized with Read Register Data

values from the processor.

If set to No, the Read Register Data values in the module are set to 0

upon initialization.

If set to Yes, the data is initialized with Read Register Data values

from the processor. This option requires associated ladder logic to

pass the data from the processor to the module.

Pass-Through Mode 0, 1, 2, or 3 Handling of write request messages on server ports:

0 = Store data directly in internal database.

1 = Store received message in unformatted block for processor.

2 = Store received data in formatted block for processor after

swapping bytes.

3 = Store received data in formatted block for processor.

Duplex/Speed Code 0, 1, 2, 3, or 4 0 = Auto-negotiate

1 = 10MB/half-duplex

2 = 10MB/full-duplex

3 = 100MB/half-duplex

4 = 100MB/full-duplex

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 86 of 158

6.2.2 Client 0

This section defines the Modbus TCP/IP Client driver. In the ProSoft Configuration Builder tree
view, double-click the MNET Client 0 icon.

Parameter Value Description

Error/Status Pointer -1 to 9990 The starting MVI69E-MBTCP database location to store Client x’s

error/status data. If a value of -1 is entered, the error/status data will not

be placed in the database.

This feature returns 8 Client x error/status data values. The descriptions

of these values start at the

MBTCP.STATUS.ClientStatus.CommandRequests controller tag. Refer

to the Client Status description on page 65 for more information.

Command Error Pointer 0 to 9999 Internal DB location to place command error list

Minimum Command

Delay

0 to 32767 ms Specifies the number of milliseconds to wait between commands. This

helps avoid sending commands on the network faster than the servers

can receive them.

Response Timeout 0 to 65535 ms Specifies the time that the client waits for a response from the

addressed server before re-transmitting the command (Retry Count) or

skipping to the next command in the Command List.

Retry Count 0 to 10 Specifies the number of times a command is retried if it fails.

Enron-Daniels Yes or No Use Floating point data offset.

ARP Timeout 1 to 60 sec Specifies the minimum time that the module will wait for an ARP

response from a node. During that time, the module will not

communicate with any nodes. If the module does not receive an ARP

response within this period, it will proceed communicating with other

nodes for 30 seconds until the next ARP request attempt.

Command Error Delay 0 to 300 Number of 0.1 second intervals to wait after command error.

Note: In Legacy Mode, the Enabled, Start/Active, MBAP Port Override parameters are present.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 87 of 158

6.2.3 Client 0 Commands

Parameter Value Description

Enable 0, 1, 2 This field defines whether the command is to be executed under certain

conditions.

0 = The command is disabled and is not executed in the normal polling

sequence.

1 = The command is executed each scan of the command list if the Poll

Interval (see below) is set to zero. If the Poll Interval is set to a nonzero

value, the command is executed when the interval timer expires.

2 = For write commands only. The command executes only if the

internal data associated with the command changes.

Internal Address 0 to 9999

(word-level)

or

0 to 159,999

(bit-level)

Specifies the module’s internal database register to be associated with

the command.

For Modbus Function Codes 3, 4, 6, or 16, the allowable range is 0 to

9999.

For Modbus Function Codes 1, 2, 5, or 15, the allowable range is 0 to

159,999. Note: This bit address range is available with ProSoft

Configuration Builder (PCB) v4.6.0.0 or later. Previous versions have a

range of 0 to 65535.

If the command is a read function, the data read from the slave device is

stored beginning at the module’s internal database register value

entered in this field. This register value must be in the Read Data area

of the module’s memory, defined by the Read Register Start and Read

Register Count parameters in the Module section.

If the command is a write function, the data to be written to the slave

device is sourced beginning from the module’s internal database

register specified. This register value must come from the Write Data

area of the module’s memory, defined by the Write Register Start and

Write Register Count parameters in the Module section.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 88 of 158

Note: When using a bit level command, you must define this field at the

bit level. For example, when using function codes 1 or 2 for a Read

command, you must have a enter of 160 to place the data in the

MBTCP.DATA.ReadData[10] controller tag in Studio 5000. Think of it as

the 160th bit of MBTCP internal memory (MBTCP Internal register 10 *

16 bits per register = 160). Use this formula for function codes 5 or 15

for writing bits also.

This controller tag is a 16bit signed integer. This means you can only

enter values of -32768 to 32767 in the tag. If a value to be entered is

above the 32767 (but below 65535) threshold, it displays as a negative

value in the tag. Simply subtract 65536 from the value to get the

'acceptable' value to enter the tag.

Example: You need to use an Internal bit Address of 48000, but you

cannot enter '48000' into the tag because it causes an error. 48000 -

65536 = -17536 You will enter ‘-17536’ in the Internal Address

parameter for this command.

Poll Interval 0 to 65535

(1/10 second)

Specifies the minimum interval between executions of continuous

commands (Enable code = 1).

Example: The parameter is entered in 1/10th of a second. Therefore, if

a value of 100 is entered, the command executes no more frequently

than every 10 seconds. When the command reaches the top of the

command queue and 10 seconds has not elapsed, it is skipped until the

poll interval has expired.

Register Count 1 to 125 (words)

or

1 to 2000 (coils)

Specifies the number of registers or digital points to be associated with

the command. Modbus Function Codes 5 and 6 ignore this field as they

only apply to a single data point.

For Modbus Function Codes 1, 2 and 15, this parameter sets the

number of single bit digital points (inputs or coils) to be associated with

the command. Note: Up to 2000 coils are supported for Modbus

Function Codes 1 and 2. Up to 1968 coils are supported for Modbus

Function Code 15.

For Modbus Function Codes 3, 4 and 16, this parameter sets the

number of 16-bit registers to be associated with the command.

Swap Code 0, 1, 2, 3 Defines if the data received from the Modbus slave is to be ordered

differently than received from the slave device. This parameter is helpful

when dealing with floating-point or other multi-register values, as there

is no standard method of storage of these data types in slave devices.

You can set this parameter to order the register data received in an

order useful by other applications.

0 = No Change; No change is made in the byte ordering (ABCD =

ABCD)

1 = Word Swap; The words are swapped (ABCD= CDAB)

2 = Word and Byte Swap; The words are swapped, then the bytes in

each word are swapped (ABCD=DCBA)

3 = Byte Swap; The bytes in each word are swapped (ABCD=BADC)

Note: Each pair of characters is a byte. Ex: AB and CD.

Two pairs of characters are 16-bit register Ex: ABCD.

Node IP Address 1 to 255

(0 = Broadcast)

Specifies the Modbus server IP address on the network to be

considered. Most Modbus devices only accept an address in the range

of 1 to 247. If you set the value to zero, the command is a broadcast

message on the network. The Modbus protocol permits broadcast

commands for write operations. Do not use this node address for read

operations.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 89 of 158

Service Port 502 (default) Service Port of the Modbus Server to be considered. 502 or other

supported ports on server command. Use a value of ‘502’ when

addressing Modbus TCP/IP servers which are compatible with the

Schneider Electric MBAP specifications (this will be most devices). If a

server implementation supports another service port, enter the value

here.

Slave Address 1 to 255 Specifies the Modbus slave node address on the network to be

considered. Most Modbus devices only accept an address in the range

of 1 to 247. If the value is set to zero, the command will be a broadcast

message on the network.

Modbus Function 1, 2, 3, 4, 5, 6, 15, 16 Specifies the Modbus function to be executed by the command. These

function codes are defined in the Modbus protocol.

1 – Read Coil Status (0xxxx)

2 – Read Input Status (1xxxx)

3 – Read Holding Registers (4xxxx)

4 – Read Input Registers (3xxxx)

5 – Force (Write Single) Coil (0xxxx)

6 – Force (Write Single) Holding Register (4xxxx)

15 – Preset (Write) Multiple Coils (0xxxx)

16 – Preset (Write) Multiple Registers (4xxxx)

MB Address in

Device

0 to 65535 Specifies the register or digital point address offset within the Modbus

slave device. The MBTCP Client reads or writes from/to this address

within the slave.

Refer to the documentation of each Modbus slave device for their

register and digital point address assignments.

Note: The value entered here does not need to include the "Modbus

Prefix" addressing scheme. Also, this value is an offset of the zero-

based Modbus addressing scheme.

Example: Using a Modbus Function Code 3 to read from address

40010 in the slave, a value of ‘9’ would be entered in this parameter.

The firmware (internally) adds a ‘40001’ offset to the value entered. This

is the same for all Modbus addresses (0x, 1x, 3x, 4x).

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 90 of 158

6.2.4 Servers

This parameter is defined in MBTCP Servers on page 39.

Parameter Value Description

Enron-Daniels Yes or No Use Floating point data offset.

Output Offset 0 to 9999 Specifies the offset address within module memory that is to be used

with network requests for Modbus function codes 1, 5, or 15.

Bit Input Offset 0 to 9999 Specifies the offset address within module memory that is to be used

with network requests for Modbus function code 2.

Holding Register Offset 0 to 9999 Specifies the offset address within module memory that is to be used

with network requests for Modbus function codes 3, 6, or 16.

Word Input Offset 0 to 9999 Specifies the offset address within module memory that is to be used

with network requests for Modbus function code 4.

Connection Timeout 0 to 1200 sec Server will timeout if it does not receive any new data

within the specified amount of time.

Note: In Legacy Mode, the Start Active and Pass-Through Mode parameters are present.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 91 of 158

6.2.5 STATIC ARP TABLE

This table contains a list of static IP/MAC addresses that the module will utilized when an ARP
is required. The module will accept up to 40 static IP/MAC address data sets.

Parameter Value Description

IP Address 1 to 255 Specifies the Modbus server IP address on the network to be considered.

Hardware MAC Address 00 to FF WARNING: If the device in the field is changed, this table must be updated to

contain the new MAC address for that device and download to the module. If

the MAC is not changed, no communications with the module will be provided.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 92 of 158

6.2.6 Ethernet 1

The ETHERNET 1 option configures the module’s IP Address, Subnet Mask, and Gateway.

6.2.7 Comment Parameter

Under the MODULE COMMENT option, you can make a note that this configuration is a Legacy
conversion.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 93 of 158

6.3 Downloading PCB Configuration to the MVI69E-MBTCP

In Legacy Mode, the configuration project is downloaded directly to the module Ethernet port as
described in this section.

1 Right-click on the MVI69E-MBTCP icon and select DOWNLOAD FROM PC TO DEVICE.

2 In the Download files from PC to module dialog, click on the BROWSE DEVICE(S) button.
The ProSoft Discovery Service Utility searches for ProSoft devices on the network.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 94 of 158

3 Double-click on the module icon.

4 Click DOWNLOAD. When complete, the ‘Module Running’ message is displayed.

Once complete, the MVI69E-MBTCP in Legacy Mode will operate similarly to the
MVI69-MNET.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 95 of 158

6.4 Optional Add-On Instruction

The Optional AOI supports the following optional features:

• Read/Write IP Address

• Read/Write Date Time

Using controller tags, the Optional AOI allows you to request and set the module’s IP address,
date, and time. These optional features are not supported by the MVI69E-MNET legacy module.

Note: The Optional AOI may be added to an existing legacy MVI69E-MBTCP application to add the new functionality
during a module replacement.

1 Add a new rung to the existing processor ladder logic. Right-click on the new rung and
select Import Rungs…

2 Select the Optional AOI file: MVI69E_MBTCP_Optional_AddOn_Rung.L5X.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 96 of 158

3 At the Import Configuration window, select the Operation parameter to CREATE. Then
click OK.

4 The imported AOI rung is now in place.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 97 of 158

6.4.1 Setting Up the Optional AOI

1 Click on the ReadEthernetMSG icon to configure the message route:

2 In the Message Configuration dialog, under the Communication tab, select the BROWSE
button.

3 In the Message Path Browser dialog, select the MVI69E-MBTCP module under the 1769
Bus and click at OK.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 98 of 158

4 The module name is displayed in the Path field. Click OK to confirm the route
configuration.

5 Repeat the same procedure to set the route for the remaining messages:

• WriteEthernetMSG

• ReadClockMSG

• WriteClockMSG

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 99 of 158

6.4.2 Synchronizing the IP Settings from the MVI69E-MBTCP to the Processor

This section covers the process to read the IP settings from the MVI69E-MBTCP, and
implement them in the processor.

1 To trigger the IP settings read operation, set the MVI69EMBTCPEthernet.Read bit to ‘1’.

2 Once the operation is concluded, the tag will automatically reset to ‘0’.

3 The data is stored in the MVI69EMBTCPEthernet.Config tags (IP, Netmask, Gateway)
as follows:

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 100 of 158

6.4.3 Synchronizing the IP Settings from the Processor to the MVI69E-MBTCP

This section covers the process to send the IP settings from the processor to the MVI69E-
MBTCP.

1 Populate the IP settings in the MVI69EMBTCPEthernet.Config tag:

2 Set the MVI69EMBTCPEthernet.Write bit to ‘1’ to trigger the IP settings write operation.

3 The MVI69EMBTCPEthernet.Write bit will automatically reset to ‘0’ once the operation is
concluded.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 101 of 158

6.4.4 Reading the Date/Time from the MVI69E-MBTCP to the Processor

1 Toggle the MVI69EMBTCPClock.Read bit to ‘1’ to toggle the date/time read operation.

2 The MVI69EMBTCPClock.Read bit will automatically reset to ‘0’ once the operation is
concluded.

3 The date and time read from the MVI69E-MBTCP is stored at the
MVI69EMBTCPClock.Config tag.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Legacy Mode User Manual

ProSoft Technology, Inc. Page 102 of 158

6.4.5 Writing the Date/Time from the Processor to the MVI69E-MBTCP

1 Populate date and time values in the MVI69EMBTCPClock.Config tag.

2 Toggle the MVI69EMBTCPClock.Write bit to ‘1’ to trigger the write date/time operation.

3 The MVI69EMBTCPClock.Write tag will be automatically reset to ‘0’ once the write
date/time operation is concluded.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 103 of 158

7 Diagnostics and Troubleshooting

The module provides information on diagnostics and troubleshooting in the following forms:

• LED status indicators on the front of the module provide general information on the
module's status.

• You can view status data contained in the module through the Ethernet port, using the
troubleshooting and diagnostic capabilities of ProSoft Configuration Builder (PCB).

• You can transfer status data values from the module to processor memory and can
monitor them in the processor manually or by customer-created logic.

7.1 LED Status Indicators

The LEDs indicate the module’s operating status.

ETH CFG

CLT BP

SRV OK

LED Color Description

ETH Green Application is running and Ethernet is ready

Off Possible causes:

• Network communication has not started yet

• Physical ethernet connection is down

• Ethernet communication is disabled as the system shuts down.

CLT Red Exception response received from the server; bad address, command, etc

 Off Possible causes:

• No client-side communication has started yet

• The database, MBTCP client, and outputs have been initialized

• MBTCP client operations are disabled as the system shuts down.

 Amber The Modbus TCP client is initializing

SRV Off Possible causes:

• During initialization, server functions have not been started

• Server communications are disabled as the system shuts down.

 Amber The module is initializing its server-side services

CFG Red Possible causes:

• Configuration failure during start-up or module boot

• Module detected a bad or unreadable configuration file; problem opening the

configuration file or the file is corrupted

Green Configuration is valid

Amber Possible causes:

• During initialization, the configuration process has started and is being

validated

• Configuration file has been received and is being processed

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 104 of 158

LED Color Description

Off Application is not running, or backplane has failed. Possible causes:

• Communication with the backplane has failed

• Backplane process is not up and running; no link to the controller so

configuration status cannot be confirmed

• Nothing to configure; module is waiting or idle. Cannot open file for writing or if

no configuration file is received from the processor

• Backplane data failure counter (Failure Flag Count parameter in the Module

configuration) exceeded the limit

• Module is in shutdown function; configuration is no longer active once the

system is shutting down.

BP Red Possible causes:

• Backplane disruption or communication error (PLC may not be in RUN mode)

• Initialization failed; backplane communication took too long. Block timeout

occurred during module initialization

• Backplane data failure counter (Failure Flag Count parameter in the Module

configuration) has exceeded the limit.

Green Backplane transfers are successful; communications with PLC are operational

Amber Initialization state: Module is in the process of establishing communication with

the controller.

Off Possible causes:

• During power-up, no communication with the backplane has started yet

• Module is in shutdown function; backplane link is no longer active once the

system is shutting down.

OK Red Possible causes:

• Module is powering up

• Module has encountered a fatal error

• Module is in shutdown function

 Green The module has properly initialized and is running

During module configuration, the OK LED is red and the BP LED is on. If the BP ACT and OK
LEDs blink at a rate of every one-second, this indicates a serious problem with the module. Call
ProSoft Technology Technical Support to arrange for repairs.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 105 of 158

7.2 Ethernet LED Indicators

The Ethernet LEDs indicate the module's Ethernet port status.

LED State Description

10Mbit Off Ethernet connected at 10Mbps duplex speed

 Amber Solid Ethernet connected at 100Mbps duplex speed

LINK/ACT Off No physical network connection is detected. No Ethernet communication is

possible. Check wiring and cables.

 Green Solid or

Blinking

Physical network connection detected. This LED must be On solid for

Ethernet communication to be possible.

7.3 Clearing a Fault Condition

Typically, if the OK LED on the front of the module remains RED for more than ten seconds, a
hardware problem has been detected in the module or the program has exited.

To clear the condition, follow these steps:

1 Turn off power to the rack.

2 Remove the card from the rack.

3 Verify that all jumpers are set correctly.

4 If the module requires a Compact Flash card, verify that the card is installed correctly.

5 Re-insert the card in the rack and turn the power back on.

6 Verify correct configuration data is being transferred to the module from the
CompactLogix controller.

If the module's OK LED does not turn GREEN, verify that the module is inserted completely into
the rack. If this does not cure the problem, contact ProSoft Technology Technical Support.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 106 of 158

7.4 Troubleshooting

Use the following troubleshooting steps if you encounter problems when the module is powered
up. If these steps do not resolve your problem, please contact ProSoft Technology Technical
Support.

7.4.1 Processor Errors

Problem Description Steps to take

Processor fault Verify that the module is securely plugged into the slot that has been configured for

the module in the I/O Configuration in RSLogix.

Verify that the slot location in the rack has been configured correctly in the ladder

logic.

Processor I/O LED flashes This indicates a problem with backplane communications. A problem could exist

between the processor, and any installed I/O module, not just the MVI69E-MBTCP.

Verify that all modules in the rack are correctly configured.

7.4.2 Module Errors

Problem Description Steps to take

BP LED remains OFF or

blinks slowly

Scrolling LED display:

<Backplane Status>

condition reads ERR

This indicates that backplane transfer operations are failing. Connect to the module’s

Configuration/Debug port to check this.

To establish backplane communications, verify the following items:

The processor is in RUN or REM RUN mode.

The backplane driver is loaded in the module.

The module is configured for read and write data block transfer.

The ladder logic handles all read and write block situations.

The module is properly configured in the processor I/O configuration and ladder logic.

OK LED remains RED The program has halted, or a critical error has occurred. Connect to the

Configuration/Debug (or communication) port to see if the module is running. If the

program has halted, turn off power to the rack, remove the card from the rack and re-

insert it, and then restore power to the rack.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 107 of 158

7.5 Connecting the PC to the Module's Ethernet Port

With the module securely mounted, connect one end of the Ethernet cable to the ETH1 Port,
and the other end to an Ethernet hub or switch accessible from the same network as the PC.
Or, connect directly from the Ethernet Port on the PC to the ETH 1 Port on the module.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 108 of 158

7.5.1 Setting Up a Temporary IP Address

Important: ProSoft Configuration Builder locates MVI69E-MBTCP modules through UDP broadcast messages.
These messages may be blocked by routers or layer 3 switches. In that case, the ProSoft Discovery Service is
unable to locate the modules.

To use ProSoft Configuration Builder, arrange the Ethernet connection so that there is no router/ layer 3 switch
between the computer and the module, OR reconfigure the router/ layer 3 switch to allow routing of the UDP
broadcast messages.

1 In the tree view in ProSoft Configuration Builder (PCB), select the MVI69E-MBTCP

module. (For instructions on opening and using a project in PCB, please refer to the
chapter Configuring the MVI69E-MBTCP Using PCB (page 35).

2 Right-click the module icon in the tree and choose DIAGNOSTICS.

3 In the Diagnostics window, click the SET UP CONNECTION button.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 109 of 158

4 In the Connection Setup dialog box, click BROWSE DEVICE(S) to start ProSoft Discovery
Service. Right-click the module and choose ASSIGN TEMPORARY IP.

5 The module’s default IP address is usually 192.168.0.250. Choose an unused IP within
your subnet, and then click OK.

Important: The temporary IP address is only valid until the next time the module is initialized. For
information on how to set the module’s permanent IP address, see Ethernet 1 (page 46).

6 Close the ProSoft Discovery Service window. Enter the temporary IP address in the
Ethernet address field of the Connection Setup dialog box, then click TEST CONNECTION

to verify that the module is accessible with the current settings.

7 If the Test Connection is successful, click CONNECT. The Diagnostics window is now
accessible. See Using the Diagnostics Menu in ProSoft Configuration Builder (page 110)
for more information.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 110 of 158

7.6 Using the Diagnostics Menu in ProSoft Configuration Builder

ProSoft Configuration Builder (PCB) provides diagnostic menus for debugging and
troubleshooting.

1 In the tree view in ProSoft Configuration Builder (PCB), select the MVI69E-MBTCP
module. For instructions on opening and using a project in PCB, please refer to the
chapter Configuring the MVI69E-MBTCP Using PCB (page 35).

2 Right-click the module and choose DIAGNOSTICS.

3 After the Diagnostics window opens, click the SETUP CONNECTION button to browse for
the module’s IP address.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 111 of 158

4 In the Ethernet field of the Connection Setup dialog box, enter the current IP address,
whether it is temporary or permanent. Click TEST CONNECTION to verify that the module
is accessible with the current settings.

5 If the TEST CONNECTION is successful, click CONNECT. The Diagnostics Window is now
accessible.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 112 of 158

7.6.1 Diagnostics Menu

The DIAGNOSTICS menu in the Diagnostics window in ProSoft Configuration Builder is available
through the Ethernet configuration port. The menu is arranged as a tree structure.

7.6.2 Monitoring General Information

In the Diagnostics window in ProSoft Configuration Builder, click MODULE and then click
VERSION to view module version information.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 113 of 158

7.6.3 Monitoring Backplane Information

In the Diagnostics window in ProSoft Configuration Builder, click BACKPLANE to view the
backplane information:

• STATUS

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 114 of 158

7.6.4 Modbus Server Driver Information

In the Diagnostics window in ProSoft Configuration Builder, click SERVERS to view the server
information. The menu has two sub-menus:

• CONFIGURATION

• STATUS

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 115 of 158

7.6.5 Monitoring Data Values in the Module’s Database

In the Diagnostics window in ProSoft Configuration Builder, click DATABASE and then click
DECIMAL to view the contents of the MVI69E-MBTCP internal database. You can view data
values in ASCII, Hexadecimal, and Float format.

7.6.6 Modbus Client Driver Information

In the Diagnostics window in ProSoft Configuration Builder, click MBTCP CLIENT X to view
Modbus Client driver information, where X is the number of the Modbus Client. The Modbus
Client Driver menus have four submenus:

• CLIENT X CONFIGURATION

• CLIENT X STATUS

• CLIENT X COMMAND LIST

• CLIENT X COMMAND STATUS

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 116 of 158

7.7 Communication Error Codes

Note: If an error code is reported that is not listed below, check with the documentation of the Modbus device(s) on
the module's application ports. Modbus devices can produce device-specific error codes.

7.7.1 Standard Modbus Protocol Exception Code Errors

Code Description

1 Illegal Function Code

2 Illegal Data Address

3 Illegal Data Value

4 Failure in Associated Device

5 Acknowledge

6 Busy, Rejected Message

7.7.2 Module Communication Error Codes

Code Description

-1 CTS modem control line not set before transmit

-2 Timeout while transmitting message

-11 Timeout waiting for response after request

253 Incorrect slave address in response

254 Incorrect function code in response

255 Invalid CRC/LRC value in response

7.7.3 Command List Entry Errors

Code Description

-41 Invalid enable code

-42 Internal address > maximum address

-43 Invalid node address (< 0 or > 255)

-44 Count parameter set to 0

-45 Invalid function code

-46 Invalid swap code

7.7.4 MBTCP Client-Specific Errors

Code Description

-33 Failed to connect to server specified in command

-36 MBTCP command response timeout

-37 TCP/IP connection ended before session finished

Note: If an error code is reported that is not listed above, check with the documentation of the end device. Device-
specific error codes can be produced by the end device.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Diagnostics and Troubleshooting User Manual

ProSoft Technology, Inc. Page 117 of 158

7.8 Connecting to the MVI69E-MBTCP Webpage

The module’s internal web server provides access to module version and status information, as
well as the ability to set the date and time, reboot the module, and download firmware upgrade
to the module. Enter the assigned IP address of the module into a web browser or use the
following steps in PCB.

1 In the Diagnostics window in ProSoft Configuration Builder, click the SET UP

CONNECTION button.

2 In the Connection Setup dialog box, click BROWSE DEVICE(S) to start the ProSoft
Discovery Service.

3 Right-click the module icon and choose VIEW MODULE’S WEBPAGE to launch your default
browser and display the module’s webpage.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 118 of 158

8 Reference

8.1 Product Specifications

The MVI69E-MBTCP allows Rockwell Automation® CompactLogix® processors to interface
easily with other Modbus TCP/IP compatible devices.

The module acts as an input/output communications module between the Modbus TCP/IP
network and the CompactLogix backplane. The data transfer from the CompactLogix processor
is asynchronous from the actions on the Modbus TCP/IP network. Databases are user-defined
and stored in the module to hold the data required by the protocol.

• Single-slot, 1769 backplane-compatible

• The module is recognized as an Input/Output module and has access to processor
memory for data transfer between processor and module.

• Ladder Logic is used for data transfer between module and processor. Sample Add-On
Instruction file included.

• Configuration data obtained from and stored in the processor.

• Supports CompactLogix processors with 1769 I/O bus capability and at least 500 mA of
5 Vdc backplane current available.

8.1.1 General Specifications - Modbus Client/Server

Specification Description

Communication Parameters Supports Modbus MBAP and encapsulated (Server) messaging 10/100 Base-T

Ethernet-compatible interface

Modbus Modes Client driver supports up to twenty connections for active reading and writing of data

with Modbus TCP/IP compatible devices

Server driver supports connections to up to five Modbus TCP/IP clients using Service

Port 502 with standard MBAP messaging, and up to five clients using Modbus

RTU/ASCII on Service Port 2000 (and others)

Floating-Point Data Floating-point data movement supported, including configurable support for Enron,

Daniel®, and other implementations

Modbus Function Codes

Supported

1: Read Coil Status

2: Read Input Status

3: Read Holding Registers

4: Read Input Registers

5: Force (Write) Single Coil

6: Preset (Write) Single Holding Register

8: Diagnostics (Server Only, responds to

Subfunction 00)

15: Force (Write) Multiple Coils

16: Preset (Write) Multiple Holding

Registers

17: Report Slave ID (Server Only)

22: Mask Write Holding Register

(Server Only)

23: Read/Write Holding Registers

(Server Only)

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 119 of 158

8.1.2 Hardware Specifications

Specification Description

Dimensions Standard 1769 Single-slot module

Current Load 500 mA max @ 5 VDC

Power supply distance rating of 4 (L43 and L45 installations on first 2

slots of 1769 bus)

Operating Temp. 32° F to 140° F (0° C to 60°C)

Storage Temp. -40° F to 185° F (-40° C to 85° C)

Relative Humidity 5% to 95% (with no condensation)

LED Indicators Module OK Status

Backplane Activity

Ethernet Port Activity

Configuration Activity

Application/Diagnostics Port (ETH 1) Diagnostics over Ethernet connection RJ45 Port

8.2 About the Modbus TCP/IP Protocol

Modbus is a widely-used protocol originally developed by Modicon in 1978. Since that time, the
protocol has been adopted as a standard throughout the automation industry.

The original Modbus specification uses a serial connection to communicate commands and data
between client and server devices on a network. Later enhancements to the protocol allow
communication over Ethernet networks using TCP/IP as a "wrapper" for the Modbus protocol.
This protocol is known as Modbus TCP/IP.

Modbus TCP/IP is a client/server protocol. The client establishes a connection to the remote
server. When the connection is established, the client sends the Modbus TCP/IP commands to
the server. The MVI69E-MBTCP module simulates up to 30 clients, and works both as a client
and a server.

Aside from the benefits of Ethernet versus serial communications (including performance,
distance, and flexibility) for industrial networks, the Modbus TCP/IP protocol allows for remote
administration and control of devices over an Internet connection. It is important to note that not
all Internet protocols are implemented in the module; for example, HTTP and SMTP protocols
are not available. Nevertheless, the efficiency, scalability, and low cost of a Modbus TCP/IP
network make this an ideal solution for industrial applications.

The MVI69E-MBTCP module acts as an input/output module between devices on a Modbus
TCP/IP network and the Rockwell Automation backplane and processor. The module uses an
internal database to pass data and commands between the processor and the client and server
devices on the Modbus TCP/IP network.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 120 of 158

8.2.1 Modbus Client

The MVI69E-MBTCP Modbus client actively issues Modbus commands to Modbus servers on
the Modbus TCP/IP network, supporting up to 16 commands for each client. The clients have an
optimized polling characteristic that polls servers with communication problems less frequently.

Parameter Description

Command List Up to 16 commands per client, each fully configurable for function, server IP

address, register to/from addressing and word/bit count.

Polling of command list Configurable polling of command list, including continuous and on change of

data, and dynamically user or automatic enabled.

Status Data Error codes available on an individual command basis. In addition, a server

status list is maintained per active Modbus client.

8.2.2 Modbus Server

The MVI69E-MBTCP Modbus Server driver permits a remote client to interact with all data
contained in the module. This data can be derived from other Modbus server devices on the
network, through a client port, or from the CompactLogix processor.

Parameter Description

Service Port MBAP messaging on Service Port 502

Encapsulated messaging on Service Port 2000

Status Data Error codes, counters and port status available

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 121 of 158

8.2.3 Function Codes Supported by the Module

The format of each command in the list depends on the Modbus Function Code being executed.
The following table lists the Function Codes supported by the MVI69E-MBTCP module.

Function Code Definition Supported as Client Supported as Server

1 Read Coil Status 0x X X

2 Read Input Status 1x X X

3 Read Holding Registers 4x X X

4 Read Input Registers 3x X X

5 Set Single Coil 0x X X

6 Single Register Write 4x X X

8 Diagnostics X

15 Multiple Coil Write 0x X X

16 Multiple Register Write 4x X X

17 Report Server ID X

22 Mask Write 4X X

23 Read/Write X

Each command list record has the same general format. The first part of the record contains the
information relating to the communication module and the second part contains information
required to interface to the Modbus server device.

8.2.4 Read Coil Status (Function Code 01)

8.2.4.1 Query

This function allows you to obtain the ON/OFF status of logic coils (Modbus 0x range) used to
control discrete outputs from the addressed server only. Broadcast mode is not supported with
this function code. In addition to the server address and function fields, the message requires
that the information field contain the initial coil address to be read (Starting Address) and the
number of locations that are interrogated to obtain status data.

The addressing allows up to 2000 coils to be obtained at each request; however, the specific
server device may have restrictions that lower the maximum quantity. The coils are numbered
from zero; (coil number 1 = zero, coil number 2 = one, coil number 3 = two, and so on).

The following table is a sample read output status request to read coils 0020 to 0056 (37 coils)
from server device number 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are in
hexadecimal display

Node
Address

Function
Code

Data Start Point
High

Data Start
Point Low

Number of Points
High

Number of
Points Low

Error Check Field (2
bytes)

0B 01 00 13 00 25 CRC

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 122 of 158

8.2.4.2 Response

An example response to Read Coil Status is as shown in the table below. The data is packed
one bit for each coil. The response includes the server address, function code, quantity of data
characters, the data characters, and error checking. Data is packed with one bit for each coil (1
= ON, 0 = OFF). The low order bit of the first character contains the addressed coil, and the
remainder follows. For coil quantities that are not even multiples of eight, the last characters are
filled in with zeros at high order end. The quantity of data characters is always specified as
quantity of RTU characters, that is, the number is the same whether RTU or ASCII is used.

Because the server interface device is serviced at the end of a controller's scan, data reflects
coil status at the end of the scan. Some servers limit the quantity of coils provided each scan;
thus, for large coil quantities, multiple PC transactions must be made using coil status from
sequential scans.

Node
Address

Func
Code

Byte
Count

Data Coil
Status 20 to
27

Data Coil
Status 28 to
35

Data Coil
Status 36 to
43

Data Coil
Status 44 to
51

Data Coil
Status 52 to
56

Error Check
Field
(2 bytes)

0B 01 05 CD 6B B2 OE 1B CRC

The status of coils 20 to 27 is shown as CD(HEX) = 1100 1101 (Binary). Reading from left to
right, this shows that coils 27, 26, 23, 22, and 20 are all on. The other Data Coil Status bytes are
decoded similarly. Due to the quantity of coil statuses requested, the last data field, which is
shown 1B (HEX) = 0001 1011 (Binary), contains the status of only 5 coils (52 to 56) instead of 8
coils. The 3 left most bits are provided as zeros to fill the 8-bit format.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 123 of 158

8.2.5 Read Input Status (Function Code 02)

8.2.5.1 Query

This function allows you to obtain the ON/OFF status of discrete inputs (Modbus 1x range) in
the addressed server. PC Broadcast mode is not supported with this function code. In addition
to the server address and function fields, the message requires that the information field contain
the initial input address to be read (Starting Address) and the number of locations that are
interrogated to obtain status data.

The addressing allows up to 2000 inputs to be obtained at each request; however, the specific
server device may have restrictions that lower the maximum quantity. The inputs are numbered
form zero; (input 10001 = zero, input 10002 = one, input 10003 = two, and so on, for a 584).

The following table is a sample read input status request to read inputs 10197 to 10218 (22
coils) from server number 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are in
hexadecimal display.

Node
Address

Function
Code

Data Start Point
High

Data Start
Point Low

Number of Points
High

Number of
Points Low

Error Check Field
(2 bytes)

0B 02 00 C4 00 16 CRC

8.2.5.2 Response

An example response to Read Input Status is as shown in the table below. The data is packed
one bit for each input. The response includes the server address, function code, quantity of data
characters, the data characters, and error checking. Data is packed with one bit for each input
(1=ON, 0=OFF). The lower order bit of the first character contains the addressed input, and the
remainder follows. For input quantities that are not even multiples of eight, the last characters
are filled in with zeros at high order end. The quantity of data characters is always specified as a
quantity of RTU characters, that is, the number is the same whether RTU or ASCII is used.

Because the server interface device is serviced at the end of a controller's scan, the data reflect
input status at the end of the scan. Some servers limit the quantity of inputs provided each scan;
thus, for large coil quantities, multiple PC transactions must be made using coil status for
sequential scans.

Node
Address

Func Code Byte Count Data Discrete Input
10197 to 10204

Data Discrete Input
10205 to 10212

Data Discrete Input
10213 to 10218

Error Check Field
(2 bytes)

0B 02 03 AC DB 35 CRC

The status of inputs 10197 to 10204 is shown as AC (HEX) = 10101 1100 (binary). Reading left
to right, this show that inputs 10204, 10202, and 10199 are all on. The other input data bytes
are decoded similar.

Due to the quantity of input statuses requested, the last data field which is shown as 35 HEX =
0011 0101 (binary) contains the status of only 6 inputs (10213 to 102180) instead of 8 inputs.
The two left-most bits are provided as zeros to fill the 8-bit format.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 124 of 158

8.2.6 Read Holding Registers (Function Code 03)

8.2.6.1 Query

This function allows you to retrieve the contents of holding registers 4xxxx (Modbus 4x range) in
the addressed server. The registers can store the numerical values of associated timers and
counters which can be driven to external devices. The addressing allows retrieving up to 125
registers at each request; however, the specific server device may have restrictions that lower
this maximum quantity. The registers are numbered form zero (40001 = zero, 40002 = one, and
so on). The broadcast mode is not allowed.

The example below reads registers 40108 through 40110 (three registers) from server number
11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are in
hexadecimal display.

Node
Address

Function
Code

Data Start
Registers High

Data Start
Registers Low

Data Number of
Registers High

Data Number of
Registers Low

Error Check Field
(2 bytes)

0B 03 00 6B 00 03 CRC

8.2.6.2 Response

The addressed server responds with its address and the function code, followed by the
information field. The information field contains 1 byte describing the quantity of data bytes to be
returned. The contents of the registers requested (DATA) are two bytes each, with the binary
content right justified within each pair of characters. The first byte includes the high order bits
and the second, the low order bits.

Because the server interface device is normally serviced at the end of the controller's scan, the
data reflect the register content at the end of the scan. Some servers limit the quantity of
register content provided each scan; thus for large register quantities, multiple transmissions are
made using register content from sequential scans.

In the example below, the registers 40108 to 40110 have the decimal contents 555, 0, and 100
respectively.

Node
Address

Function
Code

Byte
Count

High Data Low Data High Data Low Data High Data Low Data Error Check Field
(2 bytes)

0B 03 06 02 2B 00 00 00 64 CRC

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 125 of 158

8.2.7 Read Input Registers (Function Code 04)

8.2.7.1 Query

This function retrieves the contents of the controller's input registers from the Modbus 3x range.
These locations receive their values from devices connected to the I/O structure and can only
be referenced, not altered from within the controller, The addressing allows retrieving up to 125
registers at each request; however, the specific server device may have restrictions that lower
this maximum quantity. The registers are numbered for zero (30001 = zero, 30002 = one, and
so on). Broadcast mode is not allowed.

The example below requests the contents of register 30009 in server number 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are in
hexadecimal display.

Node
Address

Function
Code

Data Start Point
High

Data Start Point
Low

Data Number of
Points High

Data Number of
Points Low

Error Check Field
(2 bytes)

0B 04 00 08 00 01 CRC

8.2.7.2 Response

The addressed server responds with its address and the function code followed by the
information field. The information field contains 1 byte describing the quantity of data bytes to be
returned. The contents of the registers requested (DATA) are 2 bytes each, with the binary
content right justified within each pair of characters. The first byte includes the high order bits
and the second, the low order bits.

Because the server interface is normally serviced at the end of the controller's scan, the data
reflect the register content at the end of the scan. Each PC limits the quantity of register
contents provided each scan; thus for large register quantities, multiple PC scans are required,
and the data provided is from sequential scans.

In the example below the register 30009 contains the decimal value 0.

Node Address Function Code Byte Count Data Input Register
High

Data Input Register
Low

Error Check Field
(2 bytes)

0B 04 02 00 00 E9

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 126 of 158

8.2.8 Force Single Coil (Function Code 05)

8.2.8.1 Query

This Function Code forces a single coil (Modbus 0x range) either ON or OFF. Any coil that
exists within the controller can be forced to either state (ON or OFF). However, because the
controller is actively scanning, unless the coil is disabled, the controller can also alter the state
of the coil. Coils are numbered from zero (coil 0001 = zero, coil 0002 = one, and so on). The
data value 65,280 (FF00 HEX) sets the coil ON and the value zero turns it OFF; all other values
are illegal and do not affect that coil.

The use of server address 00 (Broadcast Mode) forces all attached servers to modify the
desired coil.

Note: Functions 5, 6, 15, and 16 are the only messages that are recognized as valid for broadcast.

The example below is a request to server number 11 to turn ON coil 0173.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are in
hexadecimal display.

Node
Address

Function
Code

Data Start Bit
High

Data Start Bit Low Number of Bits
High

Number of Bits
Low

Error Check Field
(2 bytes)

0B 05 00 AC FF 00 CRC

8.2.8.2 Response

The normal response to the Command Request is to re-transmit the message as received after
the coil state has been altered.

Node
Address

Function
Code

Data Coil Bit High Data Coil Bit Low Data On/Off Data Error Check Field
(2 bytes)

0B 05 00 AC FF 00 CRC

The forcing of a coil via Modbus function 5 happens regardless of whether the addressed coil is
disabled or not (In ProSoft products, the coil is only affected if you implement the necessary
ladder logic).

Note: The Modbus protocol does not include standard functions for testing or changing the DISABLE state of
discrete inputs or outputs. Where applicable, this may be accomplished via device specific Program commands (In
ProSoft products, this is only accomplished through ladder logic programming).

Coils that are reprogrammed in the controller logic program are not automatically cleared upon
power up. Thus, if such a coil is set ON by function Code 5 and (even months later), an output is
connected to that coil, the output is "hot".

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 127 of 158

8.2.9 Preset Single Register (Function Code 06)

8.2.9.1 Query

This Function Code allows you to modify the contents of a Modbus 4x range in the server. This
writes to a single register only. Any holding register that exists within the controller can have its
contents changed by this message. However, because the controller is actively scanning, it also
can alter the content of any holding register at any time. The values are provided in binary up to
the maximum capacity of the controller. Unused high order bits must be set to zero. When used
with server address zero (Broadcast mode), all server controllers load the specified register with
the contents specified.

Note Functions 5, 6, 15, and 16 are the only messages that are recognized as valid for broadcast.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are in
hexadecimal display.

The example below is a request to write the value ‘3’ to register 40002 in server 11.

Node
Address

Function
Code

Data Start Bit
High

Data Start
Bit Low

Preset Data
Register High

Preset Data
Register Low

Error Check Field
(2 bytes)

0B 06 00 01 00 03 CRC

8.2.9.2 Response

The response to a preset single register request is to re-transmit the query message after the
register has been altered.

Node
Address

Function
Code

Data Register
High

Data Register Low Preset Data
Register High

Preset Data
Register Low

Error Check Field
(2 bytes)

0B 06 00 01 00 03 CRC

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 128 of 158

8.2.10 Diagnostics (Function Code 08)

This function provides a series of tests for checking the communication system between a client
device and a server, or for checking various internal error conditions within a server.

The function uses a two-byte sub-function code field in the query to define the type of test to be
performed. The server echoes both the function code and sub-function code in a normal
response. Some of the diagnostics commands cause data to be returned from the remote
device in the data field of a normal response.

In general, issuing a diagnostic function to a remote device does not affect the running of the
user program in the remote device. Device memory bit and register data addresses are not
accessed by the diagnostics. However, certain functions can optionally reset error counters in
some remote devices.

A server device can, however, be forced into 'Listen Only Mode' in which it monitors the
messages on the communications system but not respond to them. This can affect the outcome
of your application program if it depends upon any further exchange of data with the remote
device. Generally, the mode is forced to remove a malfunctioning remote device from the
communications system.

8.2.10.1 Sub-function Codes Supported

Only Sub-function 00 is supported by the MVI69E-MBTCP module.

8.2.10.1.1 Return Query Data 00

The data passed in the request data field is to be returned (looped back) in the response. The
entire response message should be identical to the request.

Sub-function Data Field (Request) Data Field (Response)

00 00 Any Echo Request Data

8.2.10.2 Example and State Diagram

The following is an example of a request to remote device to Return Query Data. This uses a
sub-function code of zero (00 00 hex in the two-byte field). The data to be returned is sent in the
two-byte data field (A5 37 hex).

Request Response

Field Name (Hex) Field Name (Hex)

Function 08 Function 08

Sub-function Hi 00 Sub-function Hi 00

Sub-function Lo 00 Sub-function Lo 00

Data Hi A5 Data Hi A5

Data Lo 37 Data Lo 27

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 129 of 158

The data fields in responses to other kinds of queries could contain error counts or other data
requested by the sub-function code.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 130 of 158

8.2.11 Force Multiple Coils (Function Code 15)

8.2.11.1 Query

This function forces each coil (Modbus 0x range) in a consecutive block of coils to a desired ON
or OFF state. Any coil that exists within the controller can be forced to either state (ON or OFF).
However, because the controller is actively scanning, unless the coils are disabled, the
controller can also alter the state of the coil. Coils are numbered from zero (coil 00001 = zero,
coil 00002 = one, and so on). The desired status of each coil is packed in the data field, one bit
for each coil (1= ON, 0= OFF). The use of server address 0 (Broadcast Mode) forces all
attached servers to modify the desired coils.

Note: Functions 5, 6, 15, and 16 are the only messages (other than Loopback Diagnostic Test) that are recognized
as valid for broadcast.

The following example forces 10 coils starting at address 20 (13 HEX). The two data fields, CD
=1100 and 00 = 0000 000, indicate that coils 27, 26, 23, 22, and 20 are to be forced on.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are in
hexadecimal display.

Node
Address

Function
Code

Coil
Address
High

Coil
Address
Low

Number of
Coils High

Number of
Coils Low

Byte
Count

Force Data
High 20 to
27

Force Data
Low 28 to
29

Error Check
Field (2 bytes)

0B 0F 00 13 00 0A 02 CD 01 CRC

8.2.11.2 Response

The normal response is an echo of the server address, function code, starting address, and
quantity of coils forced.

Node Address Function Code Coil Address
High

Coil Address
Low

Number of Coils
High

Number of Coils
Low

Error Check Field (2
bytes)

0B 0F 00 13 00 0A CRC

Writing to coils with Modbus function 15 is accomplished regardless of whether the addressed
coils are disabled or not.

Coils that are not programmed in the controller logic program are not automatically cleared upon
power up. Thus, if such a coil is set ON by function code 15 and (even months later) an output
is connected to that coil, the output is hot.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 131 of 158

8.2.12 Preset Multiple Registers (Function Code 16)

8.2.12.1 Query

This Function Code allows you to modify the contents of a Modbus 4x range in the slave. This
writes up to 125 registers at time. Since the controller is actively scanning, it also can alter the
content of any holding register at any time.

Note: Function codes 5, 6, 15, and 16 are the only messages that are recognized as valid for broadcast.

The example below is a request to write 2 registers starting at register 40002 in slave 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are in
hexadecimal display.

Node
Address

Function
Code

Data Start
Address
High

Data Start
Address
Low

Number of
Points
High

Number of
Points
Low

Byte
Count

Data
High

Data
Low

Data
High

Data
Low

Error
Check
Field (2
bytes)

0B 10 00 01 00 02 04 00 0A 01 02 CRC

8.2.12.2 Response

The normal response to a function 16 query is to echo the address, function code, starting
address and number of registers to be loaded.

Node
Address

Function
Code

Data Start
Address High

Data Start
Address Low

Number of
Points High

Number of
Points Low

Error Check Field
(2 bytes)

0B 10 00 01 00 02 CRC

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 132 of 158

8.3 Floating-Point Support

You can easily move floating point data between the MBTCP module and other devices as long
as the device supports IEEE 754 Floating Point format. This IEEE format is a 32-bit single-
precision floating-point format.

The logic necessary to move the floating-point data takes advantage of the COP instruction in
Studio 5000. The COP instruction is unique for data movement commands in that it is an
untyped function, meaning that no data conversion is done when data is moved between
controller tags with different data types (that is, it is an image copy, not a value copy).

The COP instruction to move data from a floating-point controller tag into an integer controller
tag (something you would do to move floating-point values to the module) is shown below.

This instruction moves one floating-point value in two 16-bit integer images to
MBTCP.DATA.WriteData[0], which is an integer tag. For multiple floating-point values increase
the Length field by a factor of 2 per floating-point value.

The COP instruction to move data from MBTCP.DATA.ReadData[0], which is an integer tag, to
a floating-point tag (something you would do to receive floating-point values from the module) is
shown below.

This instruction moves two 16-bit integer registers containing one floating point value image into
the floating-point tag. For multiple values increase the Length field.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 133 of 158

8.3.1 ENRON Floating Point Support

Many manufacturers have implemented special support in their drivers for what is commonly
called the Enron version of the Modbus protocol. In this implementation, addresses greater than
7000 are presumed to contain floating-point values. The significance to this is that the count
descriptor for a data transfer now denotes the number of floating-point values to transfer,
instead of the number of words.

8.3.2 Configuring the Floating Point Data Transfer

A common question is how to handle floating-point data when using the module as a Modbus
client. This really depends on the server device and how it addresses this application.

Just because your application is reading or writing floating-point data, does not mean that you
must configure the Float Flag, Float Start, and Float Offset parameters within the module.

These parameters are only used to support what is typically referred to as Enron or Daniel
Modbus, where one register address must have 32 bits, or one floating point value. Below is an
example:

8.3.2.1 Example #1

Modbus Address Data Type Parameter

47101 32 bit REAL TEMP Pump #1

47102 32 bit REAL Pressure Pump #1

47103 32 bit REAL TEMP Pump #2

47104 32 bit REAL Pressure Pump #2

With the module configured as a client, you only need to enable these parameters to support a
write to this type of addressing (Modbus FC 6 or 16).

If the server device uses addressing as shown in Example #2, then you do not need to do
anything with the Float Flag or Float Start parameters, as this addressing scheme uses two
Modbus addresses to represent each floating-point value:

8.3.2.2 Example #2

Modbus Address Data Type Parameter

47101 32 bit REAL TEMP Pump #1

47103 32 bit REAL Pressure Pump #1

47105 32 bit REAL TEMP Pump #2

47107 32 bit REAL Pressure Pump #2

Because each 32 bit REAL value is represented by two Modbus addresses (example 47101 and
47102 represent TEMP Pump #1), then you do not need to set the Float Flag, or Float Start for
the module for Modbus FC 6 or 16 commands being written to the server.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 134 of 158

8.3.3 Examples

8.3.3.1 Example #1

Client is issuing Modbus command with FC 16 (with Float Flag: Yes) to transfer Float data to
server.

8.3.3.1.1 (Float specific module parameters)

Parameter Description

Float Flag: Y The client will consider the data values that need to be sent to the server as floating

point data where each data value is composed of 2 words (4 bytes or 32 bits).

Float Start Client determines that if this address number is less than or equal to the address

number in Addr in Dev parameter to double the byte count quantity to be included in

the Command FC6 or FC16 to be issued to the server. Otherwise the client ignores

the Float Flag: Y and treat data as composed of 1 word, 2 bytes.

8.3.3.1.2 (Modbus Command parameters)

Parameter Description

DB Addr The starting database address to obtain and write out to the server device.

Reg Count The number of data points to send to the server. Two counts mean two floating

points with Float Flag: Y and the Addr in Dev greater than or equal to the Float Start

Parameter.

Swap Code The orientation of the Byte and Word structure of the data value. This is device

dependent. See MBTCP Client x Commands (page 43).

Func Code Modbus function code to write the float values to the server. FC16.

Addr in Dev Database address in the server to write the data.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 135 of 158

In the example above, the client's Modbus command to transmit inside the Modbus packet is as
follows:

 Server
Address

Function
Code

Address in
Device

Reg Count Byte Count Data

DEC 01 16 7100 2 8 85.37 22.86

HEX 01 10 1B BC 00 02 08 BD 71 42 AA E1 48 41 B6

In this example, the client's Modbus packet contains the data byte and data word counts that
have been doubled from the amount specified by Reg Count due to the Float flag set to Y.
Some servers look for the byte count in the data packet to know the length of the data to read
from the wire. Other servers know at which byte the data begins and read from the wire the
remaining bytes in the packet as the data the client is sending.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 136 of 158

8.3.3.2 Example #2

Client is issuing Modbus command with FC 16 (with Float Flag: No) to transfer Float data.

Parameter Description

Float Flag: N Client will ignore the floating values and treat each register data as a data point

composed of 1 word, 2 bytes or 16 bits

Float Start N/A

DB Addr The starting database address to obtain and write out to the server device.

Reg Count The number of data points to send to the server.

Swap Code The orientation of the Byte and Word structure of the data value. This is device

dependent. See MBTCP Client x Commands (page 43).

Func Code Modbus function code to write the float values to the server. FC16.

Addr in Dev Database address in the server to write the data.

In the above example, the client's Modbus command to transmit inside the Modbus packet is as
follows:

 Server Address Function
Code

Address in
Device

Reg Count Byte Count Data

DEC 01 16 7100 2 4 85.37

HEX 01 10 1B BC 00 02 04 BD 71 42 AA

In this example, the client's Modbus packet contains the data byte and data word counts that
have NOT been doubled from the amount specified by Reg Count due to the Float Flag set to N.
The server looks for the byte count in the data packet to know the length of the data to read
from the wire. Because of insufficient byte count, some servers read only half the data from the
client's transmission. Other servers read all 8 bytes in this example because they know where in
the packet the data starts and ignore the byte count parameter inside the Modbus packet.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 137 of 158

8.3.3.3 Example #3

Client is issuing Modbus command with FC 3 to transfer Float data from server.

Parameter Description

Float Flag N/A with Modbus Function Code 3

Float Start N/A with Modbus Function Code 3

DB Addr The starting database address to store the data obtained from the server.

Reg Count The number of data points to request from the server.

Swap Code The orientation of the Byte and Word structure of the data value. This is device

dependent. See MBTCP Client x Commands (page 43).

Func Code Modbus function code to read values from the server. FC3.

Addr in Dev Database address in the server to obtain the data.

The client's Modbus command to transmit inside the Modbus packet is as follows:

 Server Address Function Code Address in Device Reg Count

DEC 01 3 6100 2

HEX 01 03 17 D4 00 02

The (Enron/Daniel supporting) server's Modbus command to transmit inside the Modbus packet
is as follows:

 Server Address Function Code Byte Count Data

DEC 01 3 8 32.75 275.69

HEX 01 03 08 00 00 42 03 D8 52 43 89

A Non-Enron/Daniel supported server's Modbus command that is transmitted inside the Modbus
packet is as follows:

 Server Address Function Code Byte Count Data

DEC 01 3 4 32.75

HEX 01 03 04 00 00 42 03

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 138 of 158

8.4 Function Blocks

Data contained in this database is paged through the input and output images by coordination of
the CompactLogix ladder logic and the MVI69E-MBTCP module's program. Each block
transferred from the module to the processor or from the processor to the module contains a
block identification code that describes the content of the block.

 Block ID Range Description

-1000 to -1166 Get input image data for initialization

-1 to -999 Dummy block

0 Read or write data for small data sets

1 to 167 Read or write data blocks

2000 to 2019 Event Command blocks

3000 to 3019 Client status request/response blocks

4000 to 4019 Event Sequence Command blocks

4100 to 4119 Event Sequence Command Error Status blocks

4200 Get queue and event sequence block counts

5001 to 5016 Command Control blocks

8000 to 8019 Add Event with data for a client

8100 Get Event with data status

9250 Get general module status data

9500 Set driver and command active bits

9501 Get driver and command active bits

9956 Pass-Through formatted block for functions 6 and 16 with word data

9957 Pass-Through formatted block for functions 6 and 16 with float data

9958 Pass-Through formatted block for function 5

9959 Pass-Through formatted block for function 15

9960 Pass-Through formatted block for function 22

9961 Pass-Through formatted block for function 23

9970 Pass-Through block for function 99

9972 Set module time using received time

9973 Pass module time to processor

9997 Reset status block

9998 Warm-boot control block

9999 Cold-boot control block

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 139 of 158

8.4.1 Event Command Blocks (2000 to 2019)

Event Command blocks send Modbus commands directly from the ladder logic to the specified
MBTCP Client x. The Event Command is added to the high-priority queue and interrupts normal
polling so this special command can be sent as soon as possible.

Note: Overusing Event Commands may substantially slow or totally disrupt normal polling. Use Event Commands
sparingly. Event Commands are meant to be used as one-shot commands triggered by special circumstances or
uncommon events.

8.4.1.1 Blocks 2000 to 2019: Request from Processor to Module

Offset Description

0 Block ID 2000 to 2019 indicates this block contains a command to execute by the Client Driver.

The last two digits indicate which client to use.

Example: ‘2015’ utilizes client 15

1 to 4 IP address for the intended server for the message. Each digit (0 to 255) of the IP address is

placed in one of the four registers

5 TCP service port to use with the message

6 Modbus node address to use with the message

7 Internal Modbus address in the module to use

8 Count parameter that determines the number of digital points or registers to associate with the

command

9 Swap type for integer data only

10 Modbus function code

11 Modbus address in the slave device associated with the command

12 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.1.2 Blocks 2000 to 2019: Response from Module to Processor

Offset Description

0 Block ID 2000 to 2019 requested by the processor

1 The next read request block identification code

2 Result of the event request.

 1 = The command was placed in the command queue.

 0 = No room was found in the command queue.

-1 = The client is not enabled and active.

3 Number of commands in queue

4 to (n-1) Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 140 of 158

8.4.2 Client Status Request/Response Blocks (3000 to 3019)

These blocks request the status of a specific MVI69E-MBTCP client.

8.4.2.1 Block 3000 or 3019: Request from Processor to Module

Offset Description

0 Block ID 3000 to 3019 identification code indicates this block requests the status from a specific

MVI69E-MBTCP client. The last two digits indicate which client to use.

Example: ‘3015’ uses client 15

1 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.2.2 Block 3000 to 3019: Response from Module to Processor

Offset Description

0 Block ID 3000 to 3019 requested by the processor

1 Write Block ID

2 to 11 Client status data

12 to 27 Command error list data for client

28 to (n-1) Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 141 of 158

8.4.3 Event Sequence Request Blocks (4000 to 4019)

These blocks send Modbus TCP/IP commands directly from controller tags by ladder logic to
the Client Command Priority queue on the module. Event Commands are not placed in the
module's internal database and are not part of the MNET Client x Command List in ProSoft
Configuration Builder.

8.4.3.1 Block 4000 to 4019: Request from Processor to Module

Offset Description

0 Block ID 4000 to 4019 indicates this block triggers the event sequence of the MVI69E-MBTCP

client. The last two digits indicate which client to use.

Example: ‘4015’ uses client 15

1 to 4 IP address for the intended server for the message. Each digit (0 to 255) of the IP address is

placed in one of the four registers

5 TCP service port for message

6 Modbus node address for the message

7 Internal Modbus address in the module

8 Count parameter that determines the number of digital points or registers to associate with the

command

9 Swap type for integer data only

10 Modbus function code

11 Modbus address in the slave device for the command

12 Sequence number

13 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.3.2 Block 4000 to 4019: Response from Module to Processor

Offset Description

0 Block ID 4000 to 4019 requested by the processor

1 Write Block ID

2 0 = Fail

 1 = Success

-1 = Client is not enabled and active

3 Number of commands in queue

4 to (n-1) Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 142 of 158

8.4.4 Event Sequence Command Error Status Blocks (4100 to 4119)

This block displays the result of each command sent to the client. The request includes the
client identification and the command sequence number. The response is the event count and
error code for each event. A value of ‘0’ in the error code means there was no error detected.

8.4.4.1 Block 4100 to 4119: Request from Processor to Module

Offset Description

0 Block ID 4100 to 4119 indicates this block triggers the event sequence command error status

request of a specific MVI69E-MBTCP client. The last two digits indicate which Client client to use.

Example: ‘4115’ uses client 15

1 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.4.2 Block 4100 to 4119: Response from Module to Processor

Offset Description

0 Block ID 4100 to 4119 requested by the processor

1 Write Block ID

2 Number of Event Sequence Messages in block (0 to 15)

3 Sequence Number

4 Return Error Code

5 Sequence Number

6 Return Error Code

7 Sequence Number

8 Return Error Code

… …

31 Sequence Number

32 Return Error Code

33 to (n-1) Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 143 of 158

8.4.5 Get Queue and Event Sequence Block Counts Block (4200)

This block requests the command queue count and the number of pending event sequence
commands for all module clients.

8.4.5.1 Block 4200: Request from Processor to Module

Offset Description

0 Block ID 4200

1 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.5.2 Block 4200: Response from Module to Processor

Offset Description

0 Block ID 4200

1 Write Block ID

2 Client 0 command queue count (MSB Most Significant Byte) and event sequence messages waiting

(LSB Least Significant Bit)

3 Client 1 command queue count (MSB Most Significant Byte) and event sequence messages waiting

(LSB Least Significant Bit)

4 Client 2 command queue count (MSB Most Significant Byte) and event sequence messages waiting

(LSB Least Significant Bit)

… …

20 Client 18 command queue count (MSB Most Significant Byte) and event sequence messages

waiting (LSB Least Significant Bit)

21 Client 19 command queue count (MSB Most Significant Byte) and event sequence messages

waiting (LSB Least Significant Bit)

22 to (n-1) Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 144 of 158

8.4.6 Command Control Blocks (5001 to 5016)

Command Control blocks place commands into the module’s command priority queue. Unlike
Event Command blocks, which contain all the values needed for one command, Command
Control is used with commands already defined in the MNET Client x Command List in ProSoft
Configuration Builder.

8.4.6.1 Block 5001 to 5016: Request from Processor to Module

Offset Description

0 Command queue block identification code of 5001 to 5016

1 Client index (0 to 19) to be used

2 Command Index in the command list for the first command to be entered into the command queue

3 to 17 Command indexes of the next commands to be placed in the command queue

18 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.6.2 Block 5001 to 5016: Response from Module to Processor

Offset Description

0 Command queue block identification code of 5001 to 5016

1 The next write block ID

2 Client index (0 to 19) to be used

3 Number of commands in the block placed in the command queue. Return values:

-2 = Client index is not valid.

-1 = Client is not enabled and active.

4 Number of commands in queue

5 to (n-1) Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 145 of 158

8.4.7 Add Event with Data for Client Blocks (8000)

The 8000-series blocks are similar to the 2000-series Event Command blocks. The 8000-series
blocks get the command data from the processor, instead of from the module’s database. These
blocks use "write" Modbus Function Codes (5, 6, 15, 16) only.

8.4.7.1 Block 8000: Request from Processor to Module

Offset Description

0 Block ID 8000 indicates this block adds an event with data of a specific MVI69E-MBTCP client. The

last two digits indicate which client to use.

Example: ‘8015’ uses client 15

1 to 4 IP address for the server for the message. Each digit (0 to 255) of the IP address is placed in one

of the four registers.

5 TCP service port to use with the message

6 Modbus node address to use with the message

7 Modbus Function Code: 5, 6, 15 or 16 only

8 Modbus address in the slave device to associate with the command

9 Count value for operation: bit count for function 15 (1 to 2000 points) and word count for function 16

(1 to 50 words or 1 to 25 float values). For functions 5 and 6, the count is assumed to be 1.

10 to 59 Data values to be used by the command

60 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.7.2 Block 8000: Response from Module to Processor

Offset Description

0 Block ID 8000 for event command with data request

1 The next read request block identification code

2 Error Code for request:

 0 = No error

-1 = Client is not enabled

-3 = Client is not active

-4 = Client busy with previous event command

-5 = Invalid Modbus command

-6 = Invalid point count for command

3 to (n-1) Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 146 of 158

8.4.8 Get Event with Data Status Block (8100)

This block requests status data for Event with Data Commands.

8.4.8.1 Block 8100: Request from Processor to Module

Offset Description

0 Block ID 8100 status data request for Event with Data Commands.

1 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.8.2 Block 8100: Response from Module to Processor

Offset Description

0 Block ID 8100 status data for Event with Data Commands

1 The next read request block identification code

2 Number of client records contained in block (0 to 19)

3 Client Index (0 to 19)

4 Error code for last command executed for client

5 Client Index (0 to 19)

6 Error code for last command executed for client

7 to 42 Data for other clients being reported

43 to (n-1) Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 147 of 158

8.4.9 Get General Module Status Data Block (9250)

This block requests general module status.

8.4.9.1 Block 9250: Request from Processor to Module

Offset Description

0 Block ID 9250 to request the general module status response block

8.4.9.2 Block 9250: Response from Module to Processor

Offset Description

0 Block ID 9250 requested by processor

1 The next read request block identification code

2 Program Scan Count: this value increments on every complete program cycle in the module.

3 to 4 Product Code: The two registers contain the product code of "MB6E" for the MVI69E-MBTCP.

5 to 6 Product Version: these two registers contain the product version for the current running software

7 to 8 Operating System: these two registers contain the month and year values for the program

operating system.

9 to 10 Run Number: these two registers contain the run number value for the current software.

11 Read Block Count: total number of read blocks transferred from the module to the processor.

12 Write Block Count: total number of write blocks transferred from the processor to the module.

13 Parse Block Count: total number of blocks successfully parsed that were received from the

processor.

14 Event Command Block Count: total number of Event Command blocks received from the

processor.

15 Command Block Count: total number of command blocks received from the processor.

16 Error Block Count: Total number of block errors recognized by the module.

17 Client 0 command execution word: each bit in this word enables/disables the commands for

client 0. If the bit is set, the command executes. If the bit is clear, the command is disabled

18 to 36 Client 1 to client 19 command execution words

37 to 38 Event Sequence Ready: bit mapped -1 bit for each client 0 to 19

Bit = 0: No event sequence status data ready

Bit = 1: Event seq. status data ready

39 Encapsulated Modbus TCP/IP request count: this counter increments each time the module

receives an Encapsulated Modbus TCP/IP (Service Port 2000) request from a remote Modbus

TCP/IP client.

40 Encapsulated Modbus TCP/IP response count: this counter increments each time an

Encapsulated Modbus TCP/IP (Service Port 2000) response is sent back to a remote Modbus

TCP/IP client command.

41 Encapsulated Modbus TCP/IP error sent: this counter increments each time the server sends an

error to the remote Modbus TCP/IP client.

42 Encapsulated Modbus TCP/IP error received: this counter increments each time an error is

received from a remote Modbus TCP/IP client.

43 Modbus MBAP request count: this counter increments each time an MBAP (Service Port 502)

request is received from a remote Modbus TCP/IP client.

44 Modbus MBAP response count: this counter increments each time an MBAP (Service Port 502)

response is sent back to a remote Modbus TCP/IP client command.

45 Modbus MBAP error sent: this counter increments each time the server sends an error to the

remote MBAP Modbus TCP/IP client.

46 Modbus MBAP error received: this counter increments each time an error is received from a

remote MBAP Modbus TCP/IP client.

47 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 148 of 158

8.4.10 Set Driver and Command Active Bits Block (9500)

This block enables and disables the Modbus TCP/IP clients and servers of the module.

8.4.10.1 Block 9500: Request from Processor to Module

Offset Description

0 Block ID 9500 to set server and client enable/disable state

1 Server active state

0 = Disabled

1 = Enabled

2 Client 0 to client 15-bit map for active status of clients

3 Client 16 to client 19-bit map for active status of clients

4 to 23 Client 0 to client 19 command active bits. One word for each client with each bit used to turn on

and off the commands for the client.

0 = Disabled

1 = Enabled

24 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.10.2 Block 9500: Response from Module to Processor

Offset Description

0 Block ID 9500 requested by processor

1 The next write block ID

2 to (n-1) Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 149 of 158

8.4.11 Get Driver and Command Active Bits Block (9501)

This block requests the active state of MBTCP Driver and Client commands.

8.4.11.1 Block 9501: Request from Processor to Module

Offset Description

0 Block ID 9501 to get MBTCP Driver and command active status

1 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.11.2 Block 9501: Response from Module to Processor

Offset Description

0 Block ID 9501 requests the active state of MBTCP Driver and Client commands

1 The next write block ID

2 Server active state

0 = Disabled

1 = Enabled

3 Client 0 to 15 bit map for active status of clients

4 Client 16 to 19 bit map for active status of clients

5 to 24 Client 0 to client 19 command active bits. One word for each client with each bit used to turn on

and off the commands for the client.

0 = Disabled

1 = Enabled

25 to (n-1) Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 150 of 158

8.4.12 Pass-Through Formatted Word Data Block for Functions 6 & 16 (9956)

If the server port on the module is configured for formatted Pass-Through mode, the module
sends input image blocks with identification codes of 9956, 9957, 9958 or 9959 to the processor
for each write command received. Any incoming Modbus Function 5, 6, 15 or 16 command is
passed from the port to the processor using a block identification number that identifies the
Function Code received in the incoming command.

The MBTCP Add-On Instruction handles the receipt of all Modbus write functions and responds
as expected to commands issued by the remote Modbus client device.

Note: Mutual exclusion on Pass-Through Block IDs 9956, 9957, 9958, and 9959 from all server connections. When
multiple server connections are active and they receive write commands with the same Function Code, the same
block identifier from the above list is needed. The module processes the command from the server which first
received a command.

The module returns an Exception Code error code 6 (Node is busy - retry command later error) from the other server
that received the command last. The client retries the command on the busy port after a short delay. This prevents
Pass-Through blocks on multiple servers from overwriting each other.

8.4.12.1 Block 9956: Request from Module to Processor

Offset Description

0 Read Block ID 9956

1 Write Block ID 9956

2 Number of word registers in the Modbus data set

3 Starting address for the Modbus data set

4 to 53 Modbus Data

54 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

The ladder logic is responsible for parsing and copying the received message and performing
the proper control operation as expected by the client device. The processor must then respond
to the Pass-Through control block with an output image write block with the following format.
This informs the module that the command has been processed and can be cleared from the
Pass-Through queue.

8.4.12.2 Block 9956: Response from Processor to Module

Offset Description

0 Write Block ID 9956

1 to (n-1) Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 151 of 158

8.4.13 Pass-Through Formatted Float Data Block for Functions 6 & 16 (9957)

8.4.13.1 Block 9957: Request from Module to Processor

Offset Description

0 Read Block ID 9957

1 Write Block ID 9957

2 Number of word registers in Modbus data set

3 Starting address for Modbus data set

4 to 53 Modbus Data

54 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

The ladder logic is responsible for parsing and copying the received message and performing
the proper control operation as expected by the client device. The processor must then respond
to the Pass-Through block with a write block with the following format. This informs the module
that the command has been processed and can be cleared from the Pass-Through queue.

8.4.13.2 Block 9957: Response from Processor to Module

Offset Description

0 Write Block ID 9957

1 to n Spare (Length in words = n - 2)

8.4.14 Pass-Through Formatted Block for Function 5 (9958)

8.4.14.1.1 Block 9958: Request from Module to Processor

Offset Description

0 Read Block ID 9958

1 Write Block ID: 9958

2 Number of word registers in the Modbus data set

3 Starting address for the Modbus data set

4 to 53 Modbus Data

54 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

The ladder logic is responsible for parsing/copying the received message and performing the
proper control operation as expected by the client device. The processor must respond to the
Pass-Through control block with an output image write block with the following format. This
informs the module that the command has been processed and can be cleared from the Pass-
Through queue.

8.4.14.1.2 Block 9958: Response from Processor to Module

Offset Description

0 Write Block ID 9958

1 to n Spare (Length in words = n - 2)

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 152 of 158

8.4.15 Pass-Through Formatted Block for Function 15 (9959)

When the module receives a function code 15 in Pass-Through mode, the module writes the
data using block ID 9959 for multiple-bit data. First the bit mask clears the bits to be updated.
This is accomplished in Studio 5000 by ANDing the inverted mask with the existing data.

Next, the new data ANDed with the mask is ORed with the existing data. This protects the other
bits in the INT registers from being affected. This function can only be used if the Block Transfer
Size parameter is set to 120 or 240 words.

8.4.15.1 Block 9959: Request from Module to Processor

Offset Description

0 Read Block ID 9959

1 Write Block ID 9959

2 Length in words

3 Data address

4 to 28 Modbus Data

29 to 53 Bit mask to use with the data set. Each bit to be considered with the data set have a value of 1 in

the mask. Bits to ignore in the data set have a value of 0 in the mask.

54 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

The ladder logic is responsible for parsing and copying the received message and performing
the proper control operation as expected by the client device. The processor must then respond
to the Pass-Through control block with a write block with the following format. This informs the
module that the command has been processed and can be cleared from the Pass-Through
queue.

8.4.15.2 Block 9959: Response from Processor to Module

Offset Description

0 Write Block ID 9959

1 to n Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 153 of 158

8.4.16 Pass-Through Formatted Block for Function 23 (9961)

8.4.16.1 Block 9961: Request from Module to Processor

Offset Description

0 Read Block ID 9961

1 Write Block ID 9961

2 Number of word registers in Modbus data set

3 Starting address for Modbus data set

4 to 53 Modbus Data

54 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

The ladder logic is responsible for parsing/copying the received message and performing the
proper control operation as expected by the client device. The processor must respond to the
Pass-Through control block with an output image write block with the following format. This
informs the module that the command has been processed and can be cleared from the Pass-
Through queue.

8.4.16.2 Block 9961: Response from Processor to Module

Offset Description

0 Write Block ID 9961

1 to n Spare (Length in words = n - 2)

8.4.17 Pass-Through Block for Function 99 (9970)

8.4.17.1 Block 9970: Request from Module to Processor

Offset Description

0 Read Block ID 9970

1 Write Block ID 9970

2 1

3 0

4 to (n-1) Spare data area

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

The ladder logic is responsible for parsing/copying the received message and performing the
proper control operation as expected by the client device. The processor must respond to the
Pass-Through control block with an output image write block with the following format. This
informs the module that the command has been processed and can be cleared from the Pass-
Through queue.

8.4.17.2 Block 9970: Response from Processor to Module

Offset Description

0 Write Block ID 9970

1 to n Spare (Length in words = n - 2)

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 154 of 158

8.4.18 Set Module Time Using Received Time Block (9972)

This block uses the time information of the processor to set the module time.

8.4.18.1 Block 9972: Request from Processor to Module

Offset Description

0 Block ID 9972

1 Year (0 to 9999)

2 Month (1 to 12)

3 Day (1 to 31)

4 Hour (0 to 23)

5 Minutes (0 to 59)

6 Seconds (0 to 59)

7 Milliseconds (0 to 999)

8 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.18.2 Block 9972: Response from Module to Processor

Offset Description

0 Block ID 9972

1 Write Block ID

2

Return code:

 0 = OK

-1 = Error

3-n Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 155 of 158

8.4.19 Pass Module Time to Processor Block (9973)

This block uses the time information of the module to set the processor time.

8.4.19.1.1 Block 9973: Request from Processor to Module

Offset Description

0 Block ID 9973

1-n Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.19.1.2 Block 9973: Response from Module to Processor

Offset Description

0 Block ID 9973

1 Write Block ID

2 Year (0 to 9999)

3 Month (1 to 12)

4 Day (1 to 31)

5 Hour (0 to 23)

6 Minutes (0 to 59)

7 Seconds (0 to 59)

8 Milliseconds (0 to 999)

9 to (n-1) Spare

8.4.20 Reset Status Block (9997)

This block resets the module, port 1, and/or port 2 status.

8.4.20.1 Block 9997: Request from Processor to Module

Offset Description

0 Block ID 9997

1

Reset Module status:

0 = No, else yes

2

Reset Port 1 status:

0 = No, else yes

3

Reset Port 2 status:

0 = No, else yes

4 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.20.2 Block 9997: Response from Module to Processor

Offset Description

0 Block ID 9997

1 Write Block ID

2-n Spare

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 156 of 158

8.4.21 Warm-boot Control Block (9998)

If the CompactLogix sends a block number 9998, the module performs a warm-boot operation.
The module reconfigures the communication ports and reset the error and status counters.

8.4.21.1 Block 9998: Request from Processor to Module

Offset Description

0 Block ID 9998

1 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

8.4.22 Cold-boot Control Block (9999)

If the CompactLogix processor sends a block number 9999, the firmware performs a cold-boot
operation. The firmware reloads the configuration file from the processor to the module and
resets all MBTCP memory, error and status data.

8.4.22.1 Block 9999: Request from Processor to Module

Offset Description

0 Block ID 9999

1 to (n-1) Spare

Where n = 60, 120, or 240 depending on the Block Transfer Size parameter.

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Reference User Manual

ProSoft Technology, Inc. Page 157 of 158

8.5 Ethernet Port Connection

8.5.1 Ethernet Cable Specifications

The recommended cable is Category 5 or better. A Category 5 cable has four twisted pairs of
wires, which are color-coded and cannot be swapped. The module uses only two of the four
pairs.

The Ethernet port or ports on the module are Auto-Sensing. Use either a standard Ethernet
straight-through cable or a crossover cable when connecting the module to an Ethernet hub, a
10/100 Base-T Ethernet switch, or directly to a PC. The module detects the cable type and uses
the appropriate pins to send and receive Ethernet signals.

Some hubs have one input that can accept either a straight-through or crossover cable,
depending on a switch position. In this case, you must ensure that the switch position and cable
type agree.

Refer to Ethernet Cable Configuration (page 157) for a diagram of how to configure Ethernet
cable.

8.5.1.1 Ethernet Cable Configuration

Note: The standard connector view shown is color-coded for a straight-through cable.

Crossover Cable Straight-through Cable

RJ-45 PIN RJ-45 PIN

1 Rx+ 3 Tx+

2 Rx- 6 Tx-

3 Tx+ 1 Rx+

6 Tx- 2 Rx-

RJ-45 PIN RJ-45 PIN

1 Rx+ 1 Tx+

2 Rx- 2 Tx-

3 Tx+ 3 Rx+

6 Tx- 6 Rx-

8.5.1.2 Ethernet Performance

Ethernet performance in the MVI69E-MBTCP module can be affected in the following way:

• Accessing the web interface (refreshing the page, downloading files, and so on) may
affect performance

• High Ethernet traffic may impact MBTCP performance, consider one of these options:

o Use managed switches to reduce traffic coming to module port

o Use CIPconnect for these applications and disconnect the module Ethernet port from
the network

MVI69E-MBTCP ♦ Modbus TCP/IP Enhanced Communication Module
Support, Service, and Warranty User Manual

ProSoft Technology, Inc. Page 158 of 158

9 Support, Service, and Warranty

9.1 Contacting Technical Support

ProSoft Technology, Inc. is committed to providing the most efficient and effective support
possible. Before calling, please gather the following information to assist in expediting this
process:

1 Product Version Number

2 System architecture

3 Network details

If the issue is hardware related, we will also need information regarding:

1 Module configuration and associated ladder files, if any

2 Module operation and any unusual behavior

3 Configuration/Debug status information

4 LED patterns

5 Details about the interfaced serial, Ethernet or Fieldbus devices

North America (Corporate Location) Europe / Middle East / Africa Regional Office

Phone: +1 661-716-5100

ps.prosofttechnology@belden.com

Languages spoken: English, Spanish

REGIONAL TECH SUPPORT

ps.support@belden.com

Phone: +33.(0)5.34.36.87.20

ps.europe@belden.com

Languages spoken: English, French, Hindi, Italian

REGIONAL TECH SUPPORT

ps.support.emea@belden.com

Latin America Regional Office Asia Pacific Regional Office

Phone: +52.222.264.1814

ps.latinam@belden.com

Languages spoken: English, Spanish,

Portuguese

REGIONAL TECH SUPPORT

ps.support.la@belden.com

Phone: +60.3.2247.1898

ps.asiapc@belden.com

Languages spoken: Bahasa, Chinese, English,

Hindi, Japanese, Korean, Malay

REGIONAL TECH SUPPORT

ps.support.ap@belden.com

For additional ProSoft Technology contacts in your area, please see:
www.prosoft-technology.com/About-Us/Contact-Us

9.2 Warranty Information

For details regarding ProSoft Technology’s legal terms and conditions, please see:
www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions

For Return Material Authorization information, please see:
www.prosoft-technology.com/Services-Support/Return-Material-Instructions

mailto:ps.prosofttechnology@belden.com
mailto:ps.support@belden.com
mailto:ps.europe@belden.com
mailto:ps.support.emea@belden.com
mailto:ps.latinam@belden.com
mailto:ps.support.la@belden.com
mailto:ps.asiapc@belden.com
mailto:ps.support.ap@belden.com
https://www.prosoft-technology.com/About-Us/Contact-Us
https://www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions
https://www.prosoft-technology.com/Services-Support/Return-Material-Instructions

	1 Start Here
	1.1 System Requirements
	1.2 Deployment Checklist
	1.3 Setting Jumpers
	1.4 Installing the Module in the Rack
	1.5 Package Contents

	2 Adding the Module to RSLogix
	2.1 Creating the Module in a Studio 5000 Project
	2.1.1 Creating a Module in the Project Using an Add-On Profile
	2.1.1.1 Installing an Add-On Profile
	2.1.1.2 Using an Add-On Profile

	2.1.2 Creating a Module in the Project Using a Generic 1769 Module Profile

	2.2 Installing ProSoft Configuration Builder
	2.3 Generating the AOI (.L5X File) in ProSoft Configuration Builder
	2.3.1 Setting Up the Project in PCB
	2.3.2 Creating and Exporting the .L5X File

	2.4 Importing the Add-On Instruction
	2.5 Adding Multiple Modules in the Rack (Optional)
	2.5.1 Adding an Additional Module in PCB
	2.5.2 Adding an Additional Module in Studio 5000

	3 Configuring the MVI69E-MBTCP Using PCB
	3.1 Basic PCB Functions
	3.1.1 Creating a New PCB Project and Exporting an .L5X File
	3.1.2 Renaming PCB Objects
	3.1.3 Editing Configuration Parameters
	3.1.4 Printing a Configuration File

	3.2 Module Configuration Parameters
	3.2.1 Module
	3.2.2 MBTCP Servers
	3.2.3 MBTCP Client x
	3.2.4 MBTCP Client x Commands
	3.2.5 Ethernet 1
	3.2.6 Static ARP Table

	3.3 Downloading the Configuration File to the Processor
	3.4 Uploading the Configuration File from the Processor

	4 Using Controller Tags
	4.1 Controller Tags
	4.1.1 MVI69E-MBTCP Controller Tags

	4.2 User-Defined Data Types (UDTs)
	4.2.1 MVI69E-MBTCP User-Defined Data Types

	4.3 MBTCP Controller Tag Overview
	4.3.1 MBTCP.CONFIG
	4.3.2 MBTCP.DATA
	4.3.3 MBTCP.CONTROL
	4.3.3.1 MBTCP.CONTROL
	4.3.3.2 MBTCP.CONTROL.EventCommand_DBData
	4.3.3.3 MBTCP.CONTROL.EventCommand_PLCData
	4.3.3.4 MBTCP.CONTROL.EventSequenceCommand
	4.3.3.5 MBTCP.CONTROL.Time
	4.3.3.6 MBTCP.CONTROL.ClientServerControl
	4.3.3.7 MBTCP.CONTROL.ResetStatus
	4.3.3.8 MBTCP.CONTROL.EventSequenceCounts
	4.3.3.9 MBTCP.CONTROL.EventSequenceStatus
	4.3.3.10 MBTCP.CONTROL.GetGeneralStatus
	4.3.3.11 MBTCP.CONTROL.GetEventDataStatus
	4.3.3.12 MBTCP.CONTROL. ColdBoot
	4.3.3.13 MBTCP.CONTROL.WarmBoot

	4.3.4 MBTCP.STATUS
	4.3.4.1 MBTCP.STATUS.Block
	4.3.4.2 MBTCP.STATUS.ClientStatus
	4.3.4.3 MBTCP.STATUS.EventSeqStatus
	4.3.4.4 MBTCP.STATUS.EventSeqCounts
	4.3.4.5 MBTCP.STATUS.GeneralStatus
	4.3.4.6 MBTCP.STATUS.GetEventDataStatus

	4.3.5 MBTCP.UTIL

	5 MVI69E-MBTCP Backplane Data Exchange
	5.1 General Concepts of the MVI69E-MBTCP Data Transfer
	5.2 Backplane Data Transfer
	5.3 Normal Data Transfer
	5.3.1 Write Block: Request from the Processor to the Module
	5.3.2 Read Block: Response from the Module to the Processor
	5.3.3 Read and Write Block Transfer Sequences
	5.3.3.1 If Block Transfer Size = 60
	5.3.3.2 If Block Transfer Size = 120
	5.3.3.3 If Block Transfer Size = 240

	5.4 Data Flow Between the Module and Processor
	5.4.1 Server Mode
	5.4.2 Master Mode
	5.4.2.1 Client Command List
	5.4.2.2 Command Error Codes

	6 Legacy Mode
	6.1 Legacy Mode Configuration
	6.2 PCB Configuration
	6.2.1 Module
	6.2.2 Client 0
	6.2.3 Client 0 Commands
	6.2.4 Servers
	6.2.5 STATIC ARP TABLE
	6.2.6 Ethernet 1
	6.2.7 Comment Parameter

	6.3 Downloading PCB Configuration to the MVI69E-MBTCP
	6.4 Optional Add-On Instruction
	6.4.1 Setting Up the Optional AOI
	6.4.2 Synchronizing the IP Settings from the MVI69E-MBTCP to the Processor
	6.4.3 Synchronizing the IP Settings from the Processor to the MVI69E-MBTCP
	6.4.4 Reading the Date/Time from the MVI69E-MBTCP to the Processor
	6.4.5 Writing the Date/Time from the Processor to the MVI69E-MBTCP

	7 Diagnostics and Troubleshooting
	7.1 LED Status Indicators
	7.2 Ethernet LED Indicators
	7.3 Clearing a Fault Condition
	7.4 Troubleshooting
	7.4.1 Processor Errors
	7.4.2 Module Errors

	7.5 Connecting the PC to the Module's Ethernet Port
	7.5.1 Setting Up a Temporary IP Address

	7.6 Using the Diagnostics Menu in ProSoft Configuration Builder
	7.6.1 Diagnostics Menu
	7.6.2 Monitoring General Information
	7.6.3 Monitoring Backplane Information
	7.6.4 Modbus Server Driver Information
	7.6.5 Monitoring Data Values in the Module’s Database
	7.6.6 Modbus Client Driver Information

	7.7 Communication Error Codes
	7.7.1 Standard Modbus Protocol Exception Code Errors
	7.7.2 Module Communication Error Codes
	7.7.3 Command List Entry Errors
	7.7.4 MBTCP Client-Specific Errors

	7.8 Connecting to the MVI69E-MBTCP Webpage

	8 Reference
	8.1 Product Specifications
	8.1.1 General Specifications - Modbus Client/Server
	8.1.2 Hardware Specifications

	8.2 About the Modbus TCP/IP Protocol
	8.2.1 Modbus Client
	8.2.2 Modbus Server
	8.2.3 Function Codes Supported by the Module
	8.2.4 Read Coil Status (Function Code 01)
	8.2.4.1 Query
	8.2.4.2 Response

	8.2.5 Read Input Status (Function Code 02)
	8.2.5.1 Query
	8.2.5.2 Response

	8.2.6 Read Holding Registers (Function Code 03)
	8.2.6.1 Query
	8.2.6.2 Response

	8.2.7 Read Input Registers (Function Code 04)
	8.2.7.1 Query
	8.2.7.2 Response

	8.2.8 Force Single Coil (Function Code 05)
	8.2.8.1 Query
	8.2.8.2 Response

	8.2.9 Preset Single Register (Function Code 06)
	8.2.9.1 Query
	8.2.9.2 Response

	8.2.10 Diagnostics (Function Code 08)
	8.2.10.1 Sub-function Codes Supported
	8.2.10.1.1 Return Query Data 00

	8.2.10.2 Example and State Diagram

	8.2.11 Force Multiple Coils (Function Code 15)
	8.2.11.1 Query
	8.2.11.2 Response

	8.2.12 Preset Multiple Registers (Function Code 16)
	8.2.12.1 Query
	8.2.12.2 Response

	8.3 Floating-Point Support
	8.3.1 ENRON Floating Point Support
	8.3.2 Configuring the Floating Point Data Transfer
	8.3.2.1 Example #1
	8.3.2.2 Example #2

	8.3.3 Examples
	8.3.3.1 Example #1
	8.3.3.1.1 (Float specific module parameters)
	8.3.3.1.2 (Modbus Command parameters)

	8.3.3.2 Example #2
	8.3.3.3 Example #3

	8.4 Function Blocks
	8.4.1 Event Command Blocks (2000 to 2019)
	8.4.1.1 Blocks 2000 to 2019: Request from Processor to Module
	8.4.1.2 Blocks 2000 to 2019: Response from Module to Processor

	8.4.2 Client Status Request/Response Blocks (3000 to 3019)
	8.4.2.1 Block 3000 or 3019: Request from Processor to Module
	8.4.2.2 Block 3000 to 3019: Response from Module to Processor

	8.4.3 Event Sequence Request Blocks (4000 to 4019)
	8.4.3.1 Block 4000 to 4019: Request from Processor to Module
	8.4.3.2 Block 4000 to 4019: Response from Module to Processor

	8.4.4 Event Sequence Command Error Status Blocks (4100 to 4119)
	8.4.4.1 Block 4100 to 4119: Request from Processor to Module
	8.4.4.2 Block 4100 to 4119: Response from Module to Processor

	8.4.5 Get Queue and Event Sequence Block Counts Block (4200)
	8.4.5.1 Block 4200: Request from Processor to Module
	8.4.5.2 Block 4200: Response from Module to Processor

	8.4.6 Command Control Blocks (5001 to 5016)
	8.4.6.1 Block 5001 to 5016: Request from Processor to Module
	8.4.6.2 Block 5001 to 5016: Response from Module to Processor

	8.4.7 Add Event with Data for Client Blocks (8000)
	8.4.7.1 Block 8000: Request from Processor to Module
	8.4.7.2 Block 8000: Response from Module to Processor

	8.4.8 Get Event with Data Status Block (8100)
	8.4.8.1 Block 8100: Request from Processor to Module
	8.4.8.2 Block 8100: Response from Module to Processor

	8.4.9 Get General Module Status Data Block (9250)
	8.4.9.1 Block 9250: Request from Processor to Module
	8.4.9.2 Block 9250: Response from Module to Processor

	8.4.10 Set Driver and Command Active Bits Block (9500)
	8.4.10.1 Block 9500: Request from Processor to Module
	8.4.10.2 Block 9500: Response from Module to Processor

	8.4.11 Get Driver and Command Active Bits Block (9501)
	8.4.11.1 Block 9501: Request from Processor to Module
	8.4.11.2 Block 9501: Response from Module to Processor

	8.4.12 Pass-Through Formatted Word Data Block for Functions 6 & 16 (9956)
	8.4.12.1 Block 9956: Request from Module to Processor
	8.4.12.2 Block 9956: Response from Processor to Module

	8.4.13 Pass-Through Formatted Float Data Block for Functions 6 & 16 (9957)
	8.4.13.1 Block 9957: Request from Module to Processor
	8.4.13.2 Block 9957: Response from Processor to Module

	8.4.14 Pass-Through Formatted Block for Function 5 (9958)
	8.4.14.1.1 Block 9958: Request from Module to Processor
	8.4.14.1.2 Block 9958: Response from Processor to Module

	8.4.15 Pass-Through Formatted Block for Function 15 (9959)
	8.4.15.1 Block 9959: Request from Module to Processor
	8.4.15.2 Block 9959: Response from Processor to Module

	8.4.16 Pass-Through Formatted Block for Function 23 (9961)
	8.4.16.1 Block 9961: Request from Module to Processor
	8.4.16.2 Block 9961: Response from Processor to Module

	8.4.17 Pass-Through Block for Function 99 (9970)
	8.4.17.1 Block 9970: Request from Module to Processor
	8.4.17.2 Block 9970: Response from Processor to Module

	8.4.18 Set Module Time Using Received Time Block (9972)
	8.4.18.1 Block 9972: Request from Processor to Module
	8.4.18.2 Block 9972: Response from Module to Processor

	8.4.19 Pass Module Time to Processor Block (9973)
	8.4.19.1.1 Block 9973: Request from Processor to Module
	8.4.19.1.2 Block 9973: Response from Module to Processor

	8.4.20 Reset Status Block (9997)
	8.4.20.1 Block 9997: Request from Processor to Module
	8.4.20.2 Block 9997: Response from Module to Processor

	8.4.21 Warm-boot Control Block (9998)
	8.4.21.1 Block 9998: Request from Processor to Module

	8.4.22 Cold-boot Control Block (9999)
	8.4.22.1 Block 9999: Request from Processor to Module

	8.5 Ethernet Port Connection
	8.5.1 Ethernet Cable Specifications
	8.5.1.1 Ethernet Cable Configuration
	8.5.1.2 Ethernet Performance

	9 Support, Service, and Warranty
	9.1 Contacting Technical Support
	9.2 Warranty Information

