

MVI56E-MCMR
ControlLogix® Platform

Modbus Communication Module with
Reduced Data Block

 October 13, 2025

USER MANUAL

MVI56E-MCMR ♦ ControlLogix® Platform Contents
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 2 of 206

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions,
comments, compliments or complaints about our products, documentation, or support, please write or call
us.

How to Contact Us

ProSoft Technology, Inc.
+1 661-716-5100
+1 661-716-5101 (Fax)
www.prosoft-technology.com
ps.support@belden.com

MVI56E-MCMR User Manual
For Public Use.

October 13, 2025

ProSoft Technology®, is a registered copyright of ProSoft Technology, Inc. All other brand or product names
are or may be trademarks of, and are used to identify products and services of, their respective owners.

Content Disclaimer

This documentation is not intended as a substitute for and is not to be used for determining suitability or
reliability of these products for specific user applications. It is the duty of any such user or integrator to
perform the appropriate and complete risk analysis, evaluation and testing of the products with respect to
the relevant specific application or use thereof. Neither ProSoft Technology nor any of its affiliates or
subsidiaries shall be responsible or liable for misuse of the information contained herein. Information in this
document including illustrations, specifications and dimensions may contain technical inaccuracies or
typographical errors. ProSoft Technology makes no warranty or representation as to its accuracy and
assumes no liability for and reserves the right to correct such inaccuracies or errors at any time without
notice. If you have any suggestions for improvements or amendments or have found errors in this
publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical,
including photocopying, without express written permission of ProSoft Technology. All pertinent state,
regional, and local safety regulations must be observed when installing and using this product. For reasons
of safety and to help ensure compliance with documented system data, only the manufacturer should
perform repairs to components. When devices are used for applications with technical safety requirements,
the relevant instructions must be followed. Failure to use ProSoft Technology software or approved software
with our hardware products may result in injury, harm, or improper operating results. Failure to observe this
information can result in injury or equipment damage.

© 2025 ProSoft Technology. All Rights Reserved.

Printed documentation is available for purchase. Contact ProSoft Technology for pricing and availability.

For professional users in the European Union

If you wish to discard electrical and electronic equipment (EEE), please contact your dealer or
supplier for further information.

Warning – Cancer and Reproductive Harm – www.P65Warnings.ca.gov

https://www.prosoft-technology.com/
mailto:ps.support@belden.com
http://www.p65warnings.ca.gov/

MVI56E-MCMR ♦ ControlLogix® Platform Contents
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 3 of 206

Open-Source Information

Open-Source Software used in the product
The product contains, among other things, Open-Source Software files, as defined below, developed by
third parties and licensed under an Open-Source Software license. These Open-Source Software files are
protected by copyright. Your right to use the Open-Source Software is governed by the relevant applicable
Open-Source Software license conditions. Your compliance with those license conditions will entitle you to
use the Open-Source Software as foreseen in the relevant license. In the event of conflicts between other
ProSoft Technology, Inc. license conditions applicable to the product and the Open-Source Software license
conditions, the Open-Source Software conditions shall prevail. The Open-Source Software is provided
royalty-free (i.e. no fees are charged for exercising the licensed rights). Open-Source Software contained in
this product and the respective Open-Source Software licenses are stated in the module webpage, in the
link Open-Source.
If Open-Source Software contained in this product is licensed under GNU General Public License (GPL),
GNU Lesser General Public License (LGPL), Mozilla Public License (MPL) or any other Open-Source
Software license, which requires that source code is to be made available and such source code is not
already delivered together with the product, you can order the corresponding source code of the Open-
Source Software from ProSoft Technology, Inc. - against payment of the shipping and handling charges - for
a period of at least 3 years since purchase of the product. Please send your specific request, within 3 years
of the purchase date of this product, together with the name and serial number of the product found on the
product label to:

ProSoft Technology, Inc.
Director of Engineering
9201 Camino Media, Suite 200
Bakersfield, CA 93311
USA

Warranty regarding further use of the Open-Source Software
ProSoft Technology, Inc. provides no warranty for the Open-Source Software contained in this product, if
such Open-Source Software is used in any manner other than intended by ProSoft Technology, Inc. The
licenses listed define the warranty, if any, from the authors or licensors of the Open-Source Software.
ProSoft Technology, Inc. specifically disclaims any warranty for defects caused by altering any Open-Source
Software or the product’s configuration. Any warranty claims against ProSoft Technology, Inc. in the event
that the Open-Source Software contained in this product infringes the intellectual property rights of a third
party are excluded. The following disclaimer applies to the GPL and LGPL components in relation to the
rights holders:
“This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License and the GNU Lesser General Public License for more details.”
For the remaining Open-Source components, the liability exclusions of the rights holders in the respective
license texts apply. Technical support, if any, will only be provided for unmodified software.

MVI56E-MCMR ♦ ControlLogix® Platform Contents
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 4 of 206

Contents

Your Feedback Please ... 2
How to Contact Us .. 2
Content Disclaimer ... 2

1 Start Here 7

1.1 What's New? ... 7
1.2 System Requirements .. 8
1.3 Deployment Checklist ... 9
1.4 Package Contents .. 10
1.5 Setting Jumpers .. 11
1.6 Installing the Module in the Rack .. 12
1.7 Importing the Sample Add-On Instruction .. 13

1.7.1 Before You Begin .. 13
1.7.2 About the Optional Add-On Instruction ... 13

1.8 Creating a New RSLogix 5000 Project ... 14
1.8.1 Creating the Remote Network .. 15
1.8.2 Creating the Module in a Remote Rack .. 17
1.8.3 Creating the Module in a Local Rack .. 20
1.8.4 Importing the Ladder Rung ... 23
1.8.5 Adjusting the Input and Output Array Sizes .. 33

1.9 Connecting Your PC to the ControlLogix Processor .. 35
1.10 Downloading the Sample Program to the Processor.. 36

1.10.1 Configuring the RSLinx Driver for the PC COM Port .. 37

2 Configuring the MVI56E-MCMR Module 39

2.1 Installing ProSoft Configuration Builder .. 39
2.2 Using ProSoft Configuration Builder Software .. 39

2.2.1 Upgrading from MVI56-MCMR in ProSoft Configuration Builder 39
2.2.2 Setting Up the Project ... 41
2.2.3 Setting Module Parameters .. 43

2.3 Configuration as a Modbus Master ... 45
2.3.1 Overview ... 45
2.3.2 Backplane Configuration ... 46
2.3.3 Port Configuration ... 47
2.3.4 Master Command Configuration ... 50
2.3.5 Other Modbus Addressing Schemes .. 54
2.3.6 Master Command Examples .. 56
2.3.7 Floating-Point Data Handling (Modbus Master) ... 64

2.4 Configuration as a Modbus Slave ... 71
2.4.1 Overview ... 71
2.4.2 Configuration File Settings .. 71
2.4.3 Slave Configuration .. 76
2.4.4 Floating-Point Data Handling (Modbus Slave) ... 77

2.5 Ethernet Configuration .. 80
2.6 Connecting Your PC to the Module's Ethernet Port ... 81

2.6.1 Setting Up a Temporary IP Address ... 81
2.7 Downloading the Project to the Module .. 85

2.7.1 Using CIPconnect® to Connect to the Module .. 87

MVI56E-MCMR ♦ ControlLogix® Platform Contents
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 5 of 206

2.7.2 Using RSWho to Connect to the Module .. 97

3 Verify Communication 98

3.1 Verify Master Communications ... 98
3.1.1 Status Data Definition as a Master ... 99
3.1.2 Command Error Codes ... 101
3.1.3 MCM Status Data ... 105

3.2 Verify Slave Communications ... 106
3.2.1 Status Data Definition as a Slave ... 107

4 Ladder Logic 108

4.1 MVI56E-MCMR User Defined Data Types ... 108
4.1.1 Module Status Data and Variables (MCMRModuleDef) 108

5 Diagnostics and Troubleshooting 113

5.1 Ethernet LED Indicators .. 113
5.1.1 Scrolling LED Status Indicators .. 113
5.1.2 Non-Scrolling LED Status Indicators .. 114

5.2 Using the Diagnostics Menu in ProSoft Configuration Builder 114
5.2.1 Connect to the Module’s Webpage .. 118
5.2.2 The Diagnostics Menu .. 119
5.2.3 Monitoring Backplane Information .. 119
5.2.4 Monitoring Database Information.. 120
5.2.5 Monitoring General Information .. 121
5.2.6 Monitoring Modbus Port Information .. 121
5.2.7 Data Analyzer ... 123

5.3 Reading Status Data from the Module ... 127
5.3.1 Required Hardware ... 127
5.3.2 Viewing the Error Status Table ... 127

5.4 Communication Error Codes .. 128
5.4.1 Clearing a Fault Condition .. 130
5.4.2 Troubleshooting .. 131

6 Reference 132

6.1 About the Modbus Protocol .. 132
6.2 Specifications .. 132

6.2.1 General Specifications .. 132
6.2.2 Hardware Specifications ... 133
6.2.3 General Specifications - Modbus Master/Slave .. 134
6.2.4 Functional Specifications .. 134

6.3 Functional Overview ... 135
6.3.1 Processor/Module Data Transfers .. 135
6.3.2 Normal Data Transfer Blocks .. 138
6.3.3 Special Function Blocks .. 140
6.3.4 Master Driver .. 155
6.3.5 Slave Driver .. 157

6.4 Cable Connections ... 158
6.4.1 Ethernet Cable Specifications ... 158
6.4.2 Ethernet Cable Configuration ... 159

MVI56E-MCMR ♦ ControlLogix® Platform Contents
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 6 of 206

6.4.3 Ethernet Performance ... 159
6.4.4 RS-232 Application Port(s) ... 160
6.4.5 RS-422 .. 162
6.4.6 RS-485 Application Port(s) ... 163
6.4.7 DB9 to RJ45 Adaptor (Cable 14) .. 164

6.5 MVI56E-MCMR Status Data Definition ... 165
6.6 Modbus Protocol Specification ... 167

6.6.1 Commands Supported by the Module .. 167
6.6.2 Read Coil Status (Function Code 01) ... 168
6.6.3 Read Input Status (Function Code 02) ... 169
6.6.4 Read Holding Registers (Function Code 03) .. 170
6.6.5 Read Input Registers (Function Code 04) .. 171
6.6.6 Force Single Coil (Function Code 05) .. 172
6.6.7 Preset Single Register (Function Code 06) .. 173
6.6.8 Diagnostics (Function Code 08) ... 174
6.6.9 Force Multiple Coils (Function Code 15) .. 176
6.6.10 Preset Multiple Registers (Function Code 16) .. 177
6.6.11 Modbus Exception Responses ... 178

6.7 Using the Optional Add-On Instruction Rung Import .. 180
6.7.1 Before You Begin .. 180
6.7.2 Overview ... 180
6.7.3 Installing the Rung Import with Optional Add-On Instruction 181
6.7.4 Reading the Ethernet Settings from the Module... 186
6.7.5 Writing the Ethernet Settings to the Module ... 187
6.7.6 Reading the Clock Value from the Module ... 189
6.7.7 Writing the Clock Value to the Module ... 190

6.8 Using the Sample Program - RSLogix 5000 Version 15 and earlier 191
6.8.1 Adding the Sample Ladder to an Existing Application .. 191
6.8.2 Add the Module to the Project .. 191
6.8.3 Copying the User Defined Data Types ... 194
6.8.4 Copy Sample Controller Tags ... 194
6.8.5 Add the Ladder Logic .. 195
6.8.6 Ladder Logic - RSLogix Version 15 and Lower .. 196

7 Support, Service & Warranty 206

7.1 Installing ProSoft Configuration Builder .. 206
7.2 Warranty Information .. 206

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 7 of 206

1 Start Here

To get the most benefit from this User Manual, you should have the following skills:

• Rockwell Automation® RSLogix™ software: launch the program, configure ladder
logic, and transfer the ladder logic to the processor

• Microsoft Windows: install and launch programs, execute menu commands,
navigate dialog boxes, and enter data

• Hardware installation and wiring: install the module, and safely connect MCMR and
ControlLogix devices to a power source and to the MVI56E-MCMR module’s
application port(s)

1.1 What's New?

MVI56E products are backward compatible with existing MVI56 products, ladder logic,
and module configuration files already in use. Easily swap and upgrade products while
benefiting from an array of new features designed to improve interoperability and
enhance ease-of-use.

• ProSoft Configuration Builder (PCB): New Windows software for diagnostics,
connecting via the module's Ethernet port or CIPconnect®, to upload/download
module configuration information and access troubleshooting features and functions.

• ProSoft Discovery Service (PDS): Utility software to find and display a list of
MVI56E modules on the network and to temporarily change an IP address to connect
with a module's web page.

• CIPconnect-enabled: Allows PC-to-module configuration and diagnostics from the
Ethernet network through a ControlLogix 1756-ENBT EtherNet/IP™ module.

• Personality Module: An industrial compact flash memory card storing the module’s
complete configuration and Ethernet settings, allowing quick and easy replacement.

• LED Scrolling Diagnostic Display: 4-character, alphanumeric display, providing
standard English messages for status and alarm data, and for processor and network
communication status.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 8 of 206

1.2 System Requirements

The MVI56E-MCMR module requires the following minimum hardware and software
components:

• Rockwell Automation ControlLogix® processor (firmware version 10 or higher), with
compatible power supply, and one free slot in the rack for the MVI56E-MCMR
module. The module requires 800 mA of available 5 Vdc power and 3 mA of available
24 VDC power.

• Rockwell Automation RSLogix 5000 programming software

o Version 16 or higher required for Add-On Instruction
o Version 15 or lower must use Sample Ladder, available from

www.prosoft-technology.com

• Rockwell Automation RSLinx® communication software version 2.51 or higher

• ProSoft Configuration Builder (PCB) (included)

• ProSoft Discovery Service (PDS) (included in PCB)

Note: The Hardware and Operating System requirements in this list are the minimum recommended to install
and run software provided by ProSoft Technology®. Other third-party applications may have different
minimum requirements. Refer to the documentation for any third-party applications for system requirements.

Note: You can install the module in a local or remote rack. For remote rack installation, the module requires
EtherNet/IP or ControlNet communication with the processor.

http://www.prosoft-technology.com/
F_1146

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 9 of 206

1.3 Deployment Checklist

Before you begin configuring the module, consider the following questions. Your answers
will help you determine the scope of your project, and the configuration requirements for
a successful deployment.

1 ____________ Are you creating a new application or integrating the module into an
existing application?

Most applications can use the Sample Add-On Instruction or Sample Ladder Logic
without any edits to the Sample Program.

2 ____________ Which slot number in the chassis will the MVI56E-MCMR module
occupy?

For communication to occur, you must enter the correct slot number in the sample
program.

3 ____________ Are RSLogix 5000 and RSLinx installed?

RSLogix and RSLinx are required to communicate to the ControlLogix processor
(1756-L1, L55, L61 & L63). Sample Ladder programs are available for different
versions of RSLogix 5000.

4 ____________ How many words of data do you need to transfer in your application
(from ControlLogix to Module / to ControlLogix from Module)?

The MVI56E-MCMR module can transfer a maximum of 5000 (16-bit) registers to and
from the ControlLogix processor. The Sample Ladder transfers 600 words to the
ControlLogix processor (into the Read Data array), and obtains 600 words from the
ControlLogix processor (from the Write Data array)

5 ____________ Will you be using the module as a Modbus Master or Modbus Slave?
Will you be transferring data using Modbus RTU or Modbus ASCII?

Modbus is a Master/Slave network. Only one Master is allowed on the serial
communications line (max 32 devices/RS485). The Master is responsible for polling
data from the Slaves on the network.

6 ____________ For a Modbus Master, what Slave Device Addresses and Modbus
Data Addresses do you need to exchange data with on the Modbus network?

For a Modbus Master, you must know the Slave Device Address number of each
Slave device to poll. You also need the Modbus address (for example, coil 00001,
register 40001) of the data to read from or write to each Slave device.

7 ____________ For a Modbus Slave, how many words or bits of data do you need to
send to the Master device?

The MVI56E-MCMR module can send data to a Modbus Master as 0x coil data, 1x
input coil data, 3x input registers, and 4x holding registers. The sample program
transfers 600 (16-bit) words or 9600 bits to the ControlLogix processor, and 600 (16-
bit) words or 9600 bits from the ControlLogix processor.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 10 of 206

8 Serial Communication Parameters for the Modbus network:

____________ Baud rate?
____________ Data bits?
____________ Parity?
____________ Stop bits?
Required for both Master and Slave configurations.

9 ____________ Wiring type to use (RS232, 422 or 485). Configured by jumper
settings.

Required for proper implementation of the module in Master and Slave configurations.

Note: If you are installing your module into a new system, and plan to use our Sample Ladder Logic, refer to
the printed Quick Start Guide in the module package for simple installation procedures.

▪ For version 16 or newer of RSLogix 5000, refer to Upload the Add-On Instruction from the Module.

▪ For EXISTING system installations, refer to Using the Sample Program - RSLogix Version 15 and earlier
(page 191).

Note: Most applications can use the Sample Ladder Logic without modifying the sample program.

1.4 Package Contents

The following components are included with your MVI56E-MCMR module, and are all
required for installation and configuration.

Important: Before beginning the installation, please verify that all the following items are present.

Qty. Part Name Part Number Part Description

1 MVI56E-MCMR
Module

MVI56E-MCMR Modbus Communication Module with Reduced Data Block

2 Cable Cable #14, RJ45 to DB9
Male Adapter cable

For DB9 Connection to Module’s Application Serial Port

2 Adapter 1454-9F Two Adapters, DB9 Female to Screw Terminal. For RS422 or
RS485 Connections to Port 1 and 2 of the Module

If any of these components are missing, please contact ProSoft Technology Support for
replacement parts.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 11 of 206

1.5 Setting Jumpers

There are three jumpers located at the bottom of the module. The first two jumpers (P1
and P2) set the serial communication mode: RS-232, RS-422 or RS-485.

The following illustration shows the MVI56E-MCMR jumper configuration, with the Setup
Jumper OFF.

The Setup Jumper acts as "write protection" for the module’s firmware. In "write
protected" mode, the Setup pins are not connected, and the module’s firmware cannot be
overwritten. The module is shipped with the Setup jumper OFF. Do not jumper the Setup
pins together unless you are directed to do so by ProSoft Technical Support (or you want
to update the module firmware).

The following illustration shows the jumper configuration with the Setup Jumper OFF.

Note: If you are installing the module in a remote rack, you may prefer to leave the Setup pins jumpered.
That way, you can update the module’s firmware without requiring physical access to the module.

Security considerations:

Leaving the Setup pin jumpered leaves the module open to unexpected firmware updates.

You should consider segmenting the data flow for security reasons. Per IEC 62443-1-1, you should align with
IEC 62443 and implement segmentation of the control system. Relevant capabilities are firewalls,
unidirectional communication, DMZ. Oil and Gas customers should also see DNVGL-RP-G108 for guidance
on partitioning.

You should practice security by design, per IEC 62443-4-1, including layers of security and detection. The
module relies on overall network security design, as it is only one component of what should be a defined
zone or subnet.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 12 of 206

1.6 Installing the Module in the Rack

If you have not already installed and configured your ControlLogix processor and power
supply, please do so before installing the MVI56E-MCMR module. Refer to your Rockwell
Automation product documentation for installation instructions.

Warning: You must follow all safety instructions when installing this or any other electronic devices. Failure
to follow safety procedures could result in damage to hardware or data, or even serious injury or death to
personnel. Refer to the documentation for each device you plan to connect to verify that suitable safety
procedures are in place before installing or servicing the device.

After you have checked the placement of the jumpers, insert the MVI56E-MCMR into the
ControlLogix chassis. Use the same technique recommended by Rockwell Automation to
remove and install ControlLogix modules.

You can install or remove ControlLogix system components while chassis power is
applied and the system is operating. However, please note the following warning.

Warning: When you insert or remove the module while backplane power is on, an electrical arc can occur.
An electrical arc can cause personal injury or property damage by sending an erroneous signal to your
system’s actuators. This can cause unintended machine motion or loss of process control. Electrical arcs
may also cause an explosion when they happen in a hazardous environment. Verify that power is removed or
the area is non-hazardous before proceeding.

Repeated electrical arcing causes excessive wear to contacts on both the module and its mating connector.
Worn contacts may create electrical resistance that can affect module operation.

1 Align the module with the top and bottom guides, and then slide it into the rack until
the module is firmly against the backplane connector.

2 With a firm, steady push, snap the module into place.
3 Check that the holding clips on the top and bottom of the module are securely in the

locking holes of the rack.
4 Make a note of the slot location. You must identify the slot in which the module is

installed in order for the sample program to work correctly. Slot numbers are identified
on the green circuit board (backplane) of the ControlLogix rack.

5 Turn power ON.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 13 of 206

1.7 Importing the Sample Add-On Instruction

Note: This section only applies if your processor is using RSLogix 5000 version 16 or higher. If you have an
earlier version, please see Using the Sample Program (page 191).

1.7.1 Before You Begin

Two Add-On Instructions are provided for the MVI56E-MCMR module. The first is
required for setting up the module; the second is optional.

Copy the files from www.prosoft-technology.com. Save them to a convenient location in
your PC, such as Desktop or My Documents.

File Name Description

MVI56(E)MCMR_AddOn_Rung_<VersionNumPri>.L5X L5X file containing Add-On Instruction, user defined
data types, controller tags and ladder logic required
to configure the MVI56E-MCMR module.

MVI56(E)MCMR_Optional_AddOn_Rung_vXXX.L5X Optional L5X file containing additional Add-On
Instruction with logic for changing Ethernet
configuration and clock settings.

1.7.2 About the Optional Add-On Instruction

The Optional Add-On Instruction performs the following tasks:

• Read/Write Ethernet Configuration

Allows the processor to read or write the module IP address, subnet mask, and
network gateway IP address.

• Read/Write Module Clock Value

Allows the processor to read and write the module clock settings. The module's free-
running clock also stores the last time that the Ethernet configuration was changed or
the last time the module was restarted or rebooted. The date and time of the last
change or restart is displayed on the scrolling LED during module power-up/start-up
sequence.

Note: You can also set the date and time from the module's home page (page 118).

Important: The Optional Add-On Instruction supports only the two features listed above. You must use the
regular MVI56E-MCMR Add-On Instruction for all other features including backplane transfer and Modbus
data communication.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 14 of 206

1.8 Creating a New RSLogix 5000 Project

1 Open the FILE menu, and then choose NEW.

2 Select your ControlLogix controller model.
3 Select the REVISION of the controller.
4 Enter a name for your controller, such as My_Controller.
5 Select your ControlLogix chassis type.
6 Select SLOT 0 for the controller.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 15 of 206

1.8.1 Creating the Remote Network

Note: If you are installing the MVI56E-MCMR module in a remote rack, follow these steps. If you are
installing the module in a local rack, follow the steps in Creating the Module - Local Rack (page 20).

1 Right-click I/O CONFIGURATION and choose NEW MODULE.

2 Expand the Communications module selections and then select the Ethernet Bridge
module that matches your hardware. This example uses a 1756-ENBT/A module.

Note: If you are prompted to Select Major Revision, choose the lower of the available revision numbers.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 16 of 206

3 Name the ENBT/A module, then set the IP Address and Slot location in the local rack
with the ControlLogix processor.

4 Click OK.
5 Next, select the 1756-ENBT module that you just created in the Controller

Organization pane and click the right mouse button to open a shortcut menu. On the
shortcut menu, choose NEW MODULE.

6 Repeat steps 2 and 3 to add the second EtherNet/IP module to the remote rack.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 17 of 206

1.8.2 Creating the Module in a Remote Rack

Note: To continue installing the MVI56E-MCMR module in a remote rack, follow these steps. If you are
installing the module in a local rack, follow the steps in Creating the Module - Local Rack (page 20).

1 Select the remote 1756 BACKPLANE node in the Controller Organization pane
underneath the remote rack EtherNet/IP module you just created and click the right
mouse button to open a shortcut menu. On the shortcut menu, choose NEW MODULE.

This action opens the SELECT MODULE dialog box.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 18 of 206

2 Select the 1756-MODULE (GENERIC 1756 MODULE) from the list and click OK. This
action opens the NEW MODULE dialog box.

3 Set the Module Properties values as follows:

Parameter Value

Name Enter a module identification string. The recommended value is
MCMR, as this name will be linked automatically with the MSG paths,
irrespective of the slot location.

Description Enter a description for the module. Example: ProSoft communication
module for Modbus Serial protocol communications.

Comm Format Select DATA-INT (*Very Important*)

Slot Enter the slot number in the rack where the MVI56E-MCMR module is
to be installed.

Input Assembly Instance 1

Input Size 42

Output Assembly Instance 2

Output Size 42

Configuration Assembly Instance 4

Configuration Size 0

4 On the CONNECTION tab, set the RPI value for your project. Fifty (50) milliseconds is
usually a good starting value.

5 The MVI56E-MCMR module is now visible in the I/O CONFIGURATION section

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 19 of 206

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 20 of 206

1.8.3 Creating the Module in a Local Rack

Note: If you are installing the MVI56E-MCMR module in a local rack, follow these steps. If you are installing
the module in a remote rack, follow the steps in Creating the Module - Remote Rack (page 15).

1 Add the MVI56E-MCMR module to the project.

In the CONTROLLER ORGANIZATION window, select I/O CONFIGURATION and click the
right mouse button to open a shortcut menu. On the shortcut menu, choose NEW

MODULE...

This action opens the SELECT MODULE dialog box.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 21 of 206

2 Select the 1756-MODULE (GENERIC 1756 MODULE) from the list and click OK. This
action opens the NEW MODULE dialog box.

3 Set the Module Properties values as follows:

Parameter Value

Name Enter a module identification string. The recommended value is
MCMR, as this name will be linked automatically with the MSG
paths, irrespective of the slot location.

Description Enter a description for the module. Example: ProSoft
communication module for Modbus Serial protocol
communications.

Comm Format Select DATA-INT (*Very Important*)

Slot Enter the slot number in the rack where the MVI56E-MCMR
module is to be installed.

Input Assembly Instance 1

Input Size 42

Output Assembly Instance 2

Output Size 42

Configuration Assembly
Instance

4

Configuration Size 0

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 22 of 206

4 On the CONNECTION tab, set the RPI value for your project. Five (5) milliseconds is
usually a good starting value. Click OK to confirm.

5 The MVI56E-MCMR module is now visible in the I/O CONFIGURATION section

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 23 of 206

1.8.4 Importing the Ladder Rung

1 In the CONTROLLER ORGANIZATION window, expand the TASKS folder and subfolder
until you reach the MAINPROGRAM folder.

2 In the MAINPROGRAM folder, double-click to open the MAINROUTINE ladder.
3 Select an empty rung in the new routine, and then click the right mouse button to

open a shortcut menu. On the shortcut menu, choose IMPORT RUNG…

4 Navigate to the location on your PC where you saved (page 13) the Add-On
Instruction (for example, "My Documents" or "Desktop"). Select the
MVI56(E)MCMR_ADDON_RUNG_V1_X.L5X file

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 24 of 206

This action opens the IMPORT CONFIGURATION dialog box, showing the controller tags
that will be created.

5 Locate the Remote_ENBT:x:I Tag, where x is the slot number of the module within
the local rack. Rename this tag to: Local:x:I. Do the same for Local:x:O. This defines
the backplane path to the module in a local rack.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 25 of 206

6 Click OK to confirm the import. RSLogix will indicate that the import is in progress:

When the import is completed, the new rung with the Add-On Instruction will be visible
as shown in the following illustration.

The procedure has also imported new User Defined Data Types, Controller Tags, and
the Add-On instruction for your project.

7 Save the application and then download the sample ladder logic into the processor.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 26 of 206

Adding Multiple Modules (Optional)

Important: If your application requires more than one MVI56E-MCMR module in the same project, follow the
steps below.

1 In the I/O CONFIGURATION folder, click the right mouse button to open a shortcut
menu, and then choose NEW MODULE.

2 Select 1756-MODULE

3 Fill the module properties as follows:

Parameter Value

Name Enter a module identification string. The recommended value is
MCMR_2. You will need to link this name with the MSG paths for the
AOI.

Description Enter a description for the module. Example: Modbus Communication
Module with Reduced Data Block

Comm Format Select DATA-INT (Very Important)

Slot Enter the slot number in the rack where the MVI56E-MCMR module
is located.

Input Assembly Instance 1

Input Size 42

Output Assembly Instance 2

Output Size 42

Configuration Assembly Instance 4

Configuration Size 0

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 27 of 206

4 Click OK to confirm. The new module is now visible:

5 Expand the TASKS folder, and then expand the MAINTASK folder.
6 On the MAINPROGRAM folder, click the right mouse button to open a shortcut menu.

On the shortcut menu, choose NEW ROUTINE. As an alternative to creating a separate
New Routine, you could skip to Step 8 and import the AOI for the second module into
the same routine you created for the first module.

7 In the NEW ROUTINE dialog box, enter the name and description of your routine, and
then click OK.

8 Select an empty rung in the new routine or an existing routine, and then click the right
mouse button to open a shortcut menu. On the shortcut menu, choose IMPORT

RUNG…

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 28 of 206

9 Select the MVI56(E)MCMR_ADDON_RUNG_V1_4.L5X file, and then click IMPORT.

10 This action opens the IMPORT CONFIGURATION window, which shows the tags that will
be imported.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 29 of 206

11 Associate the I/O connection variables to the correct module. The default values are
Remote_ENBT:15:I and Remote_ENBT:15:I so these require change.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 30 of 206

12 Change the default tags MCMR and AOI56MCMR to avoid conflict with existing tags.
In this procedure, you will append the string "_2" to all tags to be imported as shown
in the following illustration.

13 Click OK to confirm.

F_29257
F_29258

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 31 of 206

Configuring the Path for Message Blocks

If you used the recommended name for the module (MCMR) to import the first Add-On
Instruction, the MSG paths will be associated correctly with the module. For additional
modules, you must configure the message path for each MSG instruction to address the
correct module.

1 In the Add-On Instruction, click the [...] button next to each MSG tag to open the
MESSAGE CONFIGURATION TAG.

2 Click the COMMUNICATION tab and click the BROWSE button as follows.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 32 of 206

3 Select the module to configure the message path.

4 Repeat these steps for each MSG tag, and for each additional MVI56E-MCMR
module.

The setup procedure is now complete. Save the project and download the application to
your ControlLogix processor.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 33 of 206

1.8.5 Adjusting the Input and Output Array Sizes

The module internal database is divided into two user-configurable areas:

• Read Data

• Write Data

The Read Data area is moved from the module to the processor, while the Write Data
area is moved from the processor to the module. You can configure the start register and
size of each area. The size of each area you configure must match the Add-On
instruction controller tag array sizes for the READDATA and WRITEDATA arrays.

The MVI56E-MCMR sample program is configured for 600 registers of READDATA and
600 registers of WRITEDATA, which is sufficient for most applications. This topic describes
how to configure user data for applications requiring more than 600 registers of
ReadData and WriteData.

Important: Because the module pages data in blocks of 40 registers at a time, you must configure your user
data in multiples of 40 registers.

Caution: When you change the array size, RSLogix may reset the MCMR tag values to zero. To avoid data
loss, be sure to save your settings before continuing.

1 In the CONTROLLER ORGANIZATION window, expand the DATA TYPES and USER-
DEFINED folders, and then double-click MCMRDATA. This action opens an edit
window for the MCMRDATA data type.

2 In the edit window, change the value of the READDATA array from INT[600] to
INT[1000] as shown, and then click APPLY.

Note: If RSLogix resets your data values, refer to the backup copy of your program to re-enter your
configuration parameters.

Important: When you change the ReadData and WriteData array sizes in RSLogix, you must also change
the Read Register Count and Write Register Count values in ProSoft Configuration Builder (page 46).

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 34 of 206

3 In ProSoft Configuration Builder, navigate to the BACKPLANE CONFIGURATION tag
(page 46), and double click to open an edit window. Change the READ REGISTER

COUNT value to match the value you entered in RSLogix for the ReadData data type.

4 Save and download the sample program to the processor.

To modify the WRITEDATA array, follow the steps in this topic, but substitute WRITEDATA

for ReadData throughout. Also, make sure that the READDATA and WRITEDATA arrays do
not overlap in the module memory. For example, if your application requires 2000 words
of WriteData starting at register 0, then your READ REGISTER START parameter must be
set to a value of 2000 or greater in ProSoft Configuration Builder.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 35 of 206

1.9 Connecting Your PC to the ControlLogix Processor

There are several ways to establish communication between your PC and the
ControlLogix processor. The following steps show how to establish communication
through the serial interface. It is not mandatory that you use the processor's serial
interface. You may access the processor through whatever network interface is available
on your system. Refer to your Rockwell Automation documentation for information on
other connection methods.

1 Connect the right-angle connector end of the cable to your controller at the
communications port.

2 Connect the straight connector end of the cable to the serial port on your computer.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 36 of 206

1.10 Downloading the Sample Program to the Processor

Note: The key switch on the front of the ControlLogix processor must be in the REM or PROG position.

1 If you are not already online with the processor, open the Communications menu, and
then choose DOWNLOAD. RSLogix 5000 will establish communication with the
processor. You do not have to download through the processor's serial port, as
shown here. You may download through any available network connection.

2 When communication is established, RSLogix 5000 will open a confirmation dialog
box. Click the DOWNLOAD button to transfer the sample program to the processor.

3 RSLogix 5000 will compile the program and transfer it to the processor. This process
may take a few minutes.

4 When the download is complete, RSLogix 5000 will open another confirmation dialog
box. If the key switch is in the REM position, click OK to switch the processor from
PROGRAM mode to RUN mode.

Note: If you receive an error message during these steps, refer to your RSLogix documentation to interpret
and correct the error.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 37 of 206

1.10.1 Configuring the RSLinx Driver for the PC COM Port

If RSLogix is unable to establish communication with the processor, follow these steps.

1 Open RSLinx.
2 Open the COMMUNICATIONS menu, and choose CONFIGURE DRIVERS.

This action opens the Configure Drivers dialog box.

Note: If the list of configured drivers is blank, you must first choose and configure a driver from the Available
Driver Types list. The recommended driver type to choose for serial communication with the processor is RS-
232 DF1 Devices.

MVI56E-MCMR ♦ ControlLogix® Platform Start Here
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 38 of 206

3 Click to select the driver, and then click CONFIGURE. This action opens the Configure
RS-232 DF1 Devices dialog box.

4 Click the AUTO-CONFIGURE button. RSLinx will attempt to configure your serial port to
work with the selected driver.

5 When you see the message Auto Configuration Successful, click the OK button to
dismiss the dialog box.

Note: If the auto-configuration procedure fails, verify that the cables are connected correctly between the
processor and the serial port on your computer, and then try again. If you are still unable to auto-configure
the port, refer to your RSLinx documentation for further troubleshooting steps.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 39 of 206

2 Configuring the MVI56E-MCMR Module

2.1 Installing ProSoft Configuration Builder

The ProSoft Configuration Builder (PCB) software is used to configure the module. You
can find the latest version on our web site: www.prosoft-technology.com. The installation
filename contains the PCB version number. For example, PCB_4.1.0.4.0206.EXE.

1 Open a browser window and navigate to www.prosoft-technology.com.
2 Download the ProSoft Configuration Builder software and save the file to your

Windows desktop.
3 After the download completes, double-click on the PCB installation file, and follow the

instructions that appear on the screen.
4 If you want to find additional software specific to your MVI56E-MCMR, enter the

model number into the website search box and press the ENTER key.

2.2 Using ProSoft Configuration Builder Software

ProSoft Configuration Builder (PCB) provides a quick and easy way to manage module
configuration files customized to meet your application needs. PCB is not only a powerful
solution for new configuration files, but also allows you to import information from
previously installed (known working) configurations to new projects.

Note: During startup and initialization, the MVI56E-MCMR module receives its protocol and backplane
configuration information from the installed Personality Module (Compact Flash). Use ProSoft Configuration
Builder to configure module settings and to download changes to the Personality Module.

2.2.1 Upgrading from MVI56-MCMR in ProSoft Configuration Builder

MVI56E-MCMR modules are fully backward-compatible with MVI56-MCMR modules.
However, you will need to convert your MVI56-MCMR configuration in ProSoft
Configuration Builder to a form that your new MVI56E-MCMR module will accept when
you download it.

ProSoft Configuration Builder version 2.2.2 or later has an upgrade option that easily
performs this conversion, while preserving all your configuration settings and any name
you may have given your module.

Important: For this procedure, you need to have ProSoft Configuration Builder version 2.2.2 or later installed
on your PC. You can download the latest version from www.prosoft-technology.com.

https://www.prosoft-technology.com/
https://www.prosoft-technology.com/

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 40 of 206

1 In ProSoft Configuration Builder's tree view, click the MODULE icon and right-click to
open a shortcut menu.

2 On the shortcut menu, select CHANGE MODULE TYPE TO MVI56E-MCMR.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 41 of 206

2.2.2 Setting Up the Project

To begin, start PROSOFT CONFIGURATION BUILDER (PCB).

If you have used other Windows configuration tools before, you will find the screen layout
familiar. PCB’s window consists of a tree view on the left, and an information pane and a
configuration pane on the right side of the window. When you first start PCB, the tree
view consists of folders for Default Project and Default Location, with a Default Module in
the Default Location folder. The following illustration shows the PCB window with a new
project.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 42 of 206

Your first task is to add the MVI56E-MCMR module to the project.

1 Use the mouse to select DEFAULT MODULE in the tree view, and then click the right
mouse button to open a shortcut menu.

2 On the shortcut menu, select CHOOSE MODULE TYPE. This action opens the Choose
Module Type dialog box.

3 In the Product Line Filter area of the dialog box, select MVI56E. In the Select Module
Type dropdown list, select MVI56E-MCMR, and then click OK to save your settings
and return to the ProSoft Configuration Builder window.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 43 of 206

2.2.3 Setting Module Parameters

Notice that the contents of the information pane and the configuration pane changed
when you added the MVI56E-MCMR module to the project.

At this time, you may wish to rename the Default Project and Default Location folders in
the tree view.

Renaming an Object

1 Select the object, and then click the right mouse button to open a shortcut menu.
From the shortcut menu, choose RENAME.

2 Type the name to assign to the object.
3 Click away from the object to save the new name.

Configuring Module Parameters

1 Click on the [+] sign next to the module icon to expand module information.

2 Click on the [+] sign next to any icon to view module information and configuration
options.

3 Double-click any icon to open an Edit dialog box.
4 To edit a parameter, select the parameter in the left pane and make your changes in

the right pane.
5 Click OK to save your changes.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 44 of 206

Creating Optional Comment Entries

1 Click the [+] to the left of the icon to expand the module comments.
2 Double-click the icon. The Edit - Module Comment dialog box appears.

3 Enter your comment and click OK to save your changes.

Printing a Configuration File

1 Select the module icon, and then click the right mouse button to open a shortcut
menu.

2 On the shortcut menu, choose VIEW CONFIGURATION. This action opens the View
Configuration window.

3 In the View Configuration window, open the FILE menu, and choose PRINT. This action
opens the Print dialog box.

4 In the Print dialog box, choose the printer to use from the drop-down list, select
printing options, and then click OK.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 45 of 206

2.3 Configuration as a Modbus Master

2.3.1 Overview

This section describes how to configure the module as a MODBUS MASTER device. The
Master is the only device on a Modbus network that can initiate communications. A
Master device issues a request message, and then waits for the slave to respond. When
the slave responds, or when a timeout has occurred, the Modbus Master will then
execute the next command in the list.

The following ProSoft Configuration Builder sections contain the Modbus Master
configuration. You must configure all three sections.

1 The BACKPLANE CONFIGURATION section sets up the backplane communication
between the MVI56E-MCMR module and the ControlLogix processor (page 46).
These settings include register addresses for ReadData and WriteData. You can
configure up to 5000 data registers in the module to exchange data with the
ControlLogix processor.

2 The MODBUS PORT1 and MODBUS PORT 2 sections configure the Modbus application
serial ports (page 47). These sections configure parameters such as baud rate, parity,
data bits, stop bits, and command response timeout.

3 The MODBUS PORT 1 COMMANDS and MODBUS PORT 2 COMMANDS sections define a
polling table (command list) for the Modbus Master (page 50). These sections contain
the addresses for devices on the network, the types of data (Modbus Function Codes)
to read from and write to those devices, and the location to store the data within the
module’s 5000 data registers.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 46 of 206

2.3.2 Backplane Configuration

The BACKPLANE CONFIGURATION section defines the 5000 data registers to use for read
and write data within the MVI56E-MCMR module. You will use these data read and write
locations in the Internal Address tag within each Master Command (page 50). The
following illustration shows the values from the sample program.

The WRITE REGISTER START parameter determines the starting register location for
WRITEDATA[0 to 599]. The WRITE REGISTER COUNT determines how many of the 5000
registers to use send data to the module. The sample ladder file uses 600 registers for
write data, labeled MCMR.DATA.WRITEDATA[0 to 599].

Parameter Description

Error/Status Block Pointer Used mainly when the module is configured as a Slave. This parameter
places the STATUS data into the database of the module.

Read Register Start Specifies the starting register in the module's database for sending data to
the ReadData controller tag array in the ControlLogix processor.

Read Register Count Sets how many registers of data the MVI56E-MCMR module will send to the
ControlLogix processor's ReadData array. This value is best if set to a
multiple of 200 (40 for MCMR).

Write Register Start Specifies where in the 5000 register module memory to start placing data
sent from the WriteData tag array in the ControlLogix processor.

Write Register Count Specifies how many registers of data the MVI56E-MCMR module will request
from the ControlLogix processor. Because the module pages data in blocks of
40 words, this number is best if it is evenly divisible by 40.

Backplane Fail Count Sets the consecutive number of backplane failures that will cause the module
to stop communications on the Modbus network. Typically used when the
module is configured as a Slave.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 47 of 206

The sample configuration values configure the module database to store WRITEDATA[0 to
599] in registers 0 to 599, and READDATA[0 TO 599] in registers 1000 to 1599, as shown
in the following illustration.

Important: If you need to configure different values for the Read Register Count and Write Register Count
parameters, you must also configure the same values in the user-defined data type MCMRData in the
sample program (page 32).

2.3.3 Port Configuration

The MODBUS PORT X configuration parameters are used when the module is configured
as a Modbus Master device. Port 1 and Port 2 each have their own set of configuration
parameters.

Note: Any changes made within the configuration file must be downloaded to the MVI56E-MCMR module
from ProSoft Configuration Builder.

In ProSoft Configuration Builder, expand the MVI56E-MCMR node, and then expand the
MCM PORT 1 node. Double-click the MODBUS PORT 1 icon. In the EDIT - MODBUS PORT 1
dialog box, click to highlight the Type parameter, and then select MASTER from the
dropdown list.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 48 of 206

The following parameters are displayed when the Type parameter is set to MASTER.

The following table describes the parameters in the EDIT – MODBUS PORT 1 dialog box
when the Type parameter is set to MASTER.

Parameter Description

Enabled 1 = ENABLE PORT, 0 = disable port

Type 0 = MASTER, 1 = Slave

Protocol 0 = MODBUS RTU MODE, 1 = Modbus ASCII mode

Baud Rate Sets the baud rate for the port. Valid values for this field are 110, 150, 300,
600, 1200, 2400, 4800, 9600, 19200, 384 or 3840 (for 38,400 baud), 576 or
5760 (for 57,600 baud) and 115,1152, or 11520 (for 115,200 baud)

Parity 0 = None, 1 = Odd, 2 = Even

Data Bits Modbus RTU mode = 8 Modbus ASCII mode = 8 or 7

Stop Bits Valid values are 1 or 2.

RTS On 0 to 65535 milliseconds to delay after RTS line is asserted on the port before
data message transmission begins. This delay can be used to allow for radio
keying or modem dialing before data transmission begins.

RTS Off 0 to 65535 milliseconds to delay after data message is complete before RTS
line is dropped on the port.

Use CTS Line NO or YES
This parameter is used to enable or disable hardware handshaking. The default
setting is NO hardware handshaking, CTS Line not used. Set to NO if the
connected devices do not need hardware handshaking. Set to YES if the
device(s) connected to the port require hardware handshaking (most modern
devices do not). If you set this parameter to YES, be sure to pay attention to the
pinout and wiring requirements to ensure that the hardware handshaking signal
lines are properly connected; otherwise communication will fail.

Float Flag YES or NO
Enables or disables use of floating data type

Float Start 0 to 32767
Register offset in message for floats

Float Offset 0 to 3998
Internal address for floats

Function 99 Offset 1 to 247
Modbus node address for this port on the network

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 49 of 206

Parameter Description

Minimum Command Delay 0 to 65535 milliseconds
The amount of delay in milliseconds to be inserted after receiving a Slave
response or encountering a response timeout before retrying the command or
sending the next command on the list. Use this parameter to slow down overall
polling speed and spread out commands on networks with Slaves that require
additional gaps between messages.

Command Error Pointer Internal DB location to place command error list
Each command will reserve one word for the command error code for that
command. See Verify Communication (page 98). CMDERRPTR value should be
within the range of the READDATA array. See Backplane Configuration (page
46).

Error Delay Counter This parameter specifies the number of poll attempts to be skipped before
trying to re-establish communications with a slave that has failed to respond to
a command within the time limit set by the Response Timeout parameter. After
the slave fails to respond, the master will skip sending commands that should
have been sent to the slave until the number of skipped commands matches
the value entered in this parameter. This creates a sort of slow poll mode for
slaves that are experiencing communication problems.

Response Timeout 0 to 65535 milliseconds response timeout for command before it will either
reissue the command, if RETRYCOUNT > 0.
If the RetryCount =0 or if the designated number of retries have been
accomplished, then the Master will move on to the next command in the list.

Retry Count Number of times to retry a failed command request before moving to the next
command on the list.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 50 of 206

2.3.4 Master Command Configuration

This topic describes the communications with the Master port and slave devices that are
connected to that port.

In ProSoft Configuration Builder, expand the MVI56E-MCMR node, and then double-click
the MODBUS PORT 1 COMMANDS icon.

Parameter Description

Enable 0 = Disabled
Command will not be executed, but can be enabled using the Command Control
option in ladder logic.
1 = Enabled
Command is enabled and will be sent out to the target device.
2 = Conditional Write
Only for Function Codes 5, 15, 6, or 16. Data will be sent to the target device
only when the data to be written has changed in the source registers of the
module’s internal database.

Internal Address 0 to 4999 for Register-level commands
0 to 65535 for Bit-level commands
Determines the starting address in the module’s 5000-register database that will
be affected by the command. For a Read command, this will determine where
the data will begin to be placed in the module database after it has been read
from a slave. For read commands, you should configure this value so that the
data will be placed in the range of module memory designated for ReadData, as
defined in the Backplane Configuration section of this configuration file. For write
commands, the INTERNAL ADDRESS determines where to begin obtaining the data
to write to the slave device. This must be a location that is in the WriteData area
of module memory, as defined in the Backplane Configuration section of this
configuration file.
Note: When using a bit-level command, you must define this field at the bit level.
For example, when using a Function Code 1, 2 for a Read command, you must
have a value of 16000 to place the data in MCM.ReadData[0]
(ReadStartRegister = 1000 * 16 bits per register = 16000).

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 51 of 206

Parameter Description

Poll Interval 0 to 65535
The Poll Interval is the number of seconds that the Master will wait between
successive executions of this command. Set to zero (0) for the fastest possible
polling.
This parameter can be used to prioritize and optimize network traffic by
assigning low values to high-priority poll requests and assigning higher values to
less important data poll commands.

Reg Count 1 to 125 words for Function Codes 3, 4, and 16 (Register-level)
1 to 2000 for Function Codes 1, 2, and 15 (Bit-level)
Sets how many continuous words (Function Codes 3, 4, and 16) or bits
(Function Codes 1, 2, and 15) to request from the slave device.
Note: These values are the maximum allowed in the Modbus protocol. Some
devices may support fewer words or bits per command than these maximum
values.

Swap Code NO CHANGE, SWAP WORDS, SWAP WORDS & BYTES, SWAP BYTES
Typically used when reading floating-point data. Swaps the data read from the
slave device before it is placed into the module memory. For example, you
receive 4 bytes of data from the slave (ABCD).
NO CHANGE = No swapping (ABCD)
SWAP WORDS = Word pairs switched (CDAB)
SWAP WORDS AND BYTES = Bytes and words switched (DCBA)
SWAP BYTES = Bytes swapped (BADC)

Node Address 1 to 247
Modbus Slave Device Address of the device on the network to read data from, or
write data to. Valid addresses are 1 to 247. Address 0 is reserved for broadcast
write commands (will broadcast a Write command to all devices on the network).

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 52 of 206

Parameter Description

ModBus Function 1, 2, 3, 4, 5, 6, 15, and 16 (when viewed in the .CFG text file)
The Modbus Function Code determines what kind of command to send to the
slave device. Valid code numbers and descriptions for this field are as follows:
Note: The Modbus protocol specifies that the valid address range for each
Modbus data type can be x00001 to x65535. Most newer Modbus devices
support this addressing range. However, some older Modbus devices may only
support addresses that range from x0001 to x9999.
FC 1 = Read Coil (0X)
Use this Function Code to read Modbus Coil addresses 000001 to 065535 (or
0x0001 to 0x9999). These are read/write single-bit binary values. Use Function
Code 5 or 15 to write to these Coil addresses.
FC 2 = Read Input (1X)
Use this Function Code to read Modbus Input Status addresses 100001 to
165535 (or 1x0001 to 1x9999). These are read-only single-bit binary values.
FC 3 = Read Holding Registers (4X)
Use this Function Code to read Modbus Holding Register addresses 400001 to
465535 (or 4x0001 to 4x9999). These are read/write 16-bit word values. Use
Function Code 6 or 16 to write to these Holding Registers.
FC 4 = Read Input Registers (3X)
Use this Function Code to read Modbus Input Register addresses 300001 to
365535 (or 3x0001 to 3x9999). These are read-only 16-bit word values.
FC 5 = Force Single Coil (0X)
Use this Function Code to write to Modbus Coil addresses. This command will
write to only one coil per command. Use Function Code 15 to write to multiple
coils in the same command.
FC 6 = Preset Single Register (4X)
Use this Function Code to write to Modbus Holding Registers. This command will
write to only one register per command. Use Function Code 16 to write to
multiple registers in the same command.
FC 15 = Force Multiple Coils (0X)
Use this Function Code to write multiple Coil values with one command.
FC 16 = Preset Multiple Registers (4X)
Use this Function Code to write multiple Holding Register values with one
command.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 53 of 206

Parameter Description

MB Address in Device Specifies the starting Modbus bit or register address where data will begin being
read from or written to the slave device. With Modbus, to read an address of
40001, what will actually be transmitted out port is Function Code 03 (one byte)
with an address of 00 00 (two bytes). This means that to read an address of
40501, use FC 3 with a MB Address in Device of 500.
This applies to all Modbus addresses. Below are some examples that will help
with your MB ADDRESS IN DEVICE configuration:
Function Codes 1, 5, or 15 for reading or writing Modbus Coils
MB Address in Device setting = Modbus Coil address in the Slave device – 0001
For Modbus Coil address 0001: MB Address in Device = 0
For Modbus Coil address 1378: MB Address in Device = 1377
Function Code 2
MB Address in Device setting = Modbus Input Status address in the Slave
device - 10001
For Modbus address 10001: MB Address in Device = 0
For Modbus Input Status address 10345: MB Address in Device = 344
Function Codes 3, 6, or 16
MB Address in Device setting = Modbus Holding Register address in the Slave
device – 40001
For Modbus Holding Register address 40001; MB Address in Device = 0
For Modbus Holding Register address 40591; MB Address in Device = 590
Function Code 4
MB Address in Device setting = Modbus Input Register address in the Slave
device – 30001
For Modbus Input Register address 30001: MB Address in Device = 0
For Modbus Input Register address 34290; MB Address in Device = 4289

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 54 of 206

2.3.5 Other Modbus Addressing Schemes

While the above information will handle most devices, some device manufacturers show
their Modbus addressing differently.

The two most common schemes are six-digit addressing (400101, 301000, and so on)
and some devices show their addressing already as an offset address (the address that
actually goes out on the Modbus communication line). When addresses are given as
actual offset addresses, they are usually given as a hexadecimal (base 16) number.

For example, Actual Values (Input Registers) Addresses: 0200 to 0E1F

STATUS 0200 Switch Input Status

 0201 LED Status Flags

 0202 LED Attribute Flags

 0203 Output Relay Status Flags

If your device manufacturer gives you addressing like this "Input Registers" example
above, then you will use Function Code 4 to convert the hexadecimal value to a decimal
equivalent value, and place the decimal value in the MB ADDRESS IN DEVICE field. So for
this example device, use Modbus Function = 4 (Input Registers) with a MB ADDRESS IN

DEVICE of 512 decimal (200h) to read the "Switch Input Status" value.

What if my slave shows addresses such as 400,001 or 301,345?

For 6-digit addressing, use the same function codes and configuration as shown above,
but subtract higher values; 100001 instead of 10001; 300001 instead of 30001; and
400001 instead of 40001.

Function Codes 1, 5, or 15 MB Address in Device = Modbus Coil address in slave
device - 000001

• For Modbus Coil address 000001; MB Address in Device = 0

• For Modbus Coil address 001378; MB Address in Device = 1377

Function Code 2 MB Address in Device = Modbus Input Status address in slave device
- 100001

• For Modbus Input Status address 100001; MB Address in Device = 0

• For Modbus Input Status address 100345; MB Address in Device = 344

Function Codes 3, 6, or 16 MB Address in Device = Modbus Holding Register address
in slave device - 400001

• For Modbus Holding Register address 400001; MB Address in Device = 0

• For Modbus Holding Register address 400591; MB Address in Device = 590

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 55 of 206

Function Code 4 MB Address in Device = Modbus Input Register address in device -
300001

• For Modbus Input Register address 300001; MB Address in Device = 0

• For Modbus Input Register address 304290; MB Address in Device = 4289

For example:
If our device listed above shows its addressing as follows:

Then: To read "Switch_Input_Status", you would use Function Code 4 and use a MB
Address in Device of 512.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 56 of 206

2.3.6 Master Command Examples

Read Holding Registers 4x (Modbus Function Code 3)

The 4x Holding Registers are used for storing analog values such as pressure,
temperature, current, program counters, timer accumulators and presets, and so on.
Holding Registers store values in 16-bit memory registers. These 16-bit values can be
interpreted in different ways that allow Holding Registers to hold many different data
types, such as 8-bit, 16-bit, 32-bit, or 64-bit signed or unsigned integers, as well as 32-bit
or 64-bit floating-point data (page 63) and other data types.

The following illustration shows the correct parameter values to create a command to
read Modbus addresses 40001 to 40010 from Modbus Slave Device Address 1.

Parameter Description

Enable = YES The module will send the command every time it goes through the command list.

Internal Address = 1000 Begins placing the data read from the slave device into the module at address
1000. Internal Address 1000 of the module memory will be copied into the tag
MCMR.DATA.READDATA[0], assuming MCMR.CONFIG.ReadStartReg = 1000.

Reg Count = 10 Read 10 consecutive registers from the Slave device.

Node Address = 1 Issues the Modbus command to Modbus Slave Device Address 1.

Modbus Function =3 Issues Modbus Function Code 3 to Read Holding Registers.

MB Address in Device = 0 Using Function Code 3, MB Address in Device of 0 will read Holding Register
address 40001 (or 400001, if using 6-digit addressing)
With a count of 10, this command reads 40001 to 40010 (400001 to 400010).

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 57 of 206

Read Input Registers 3xxxxx (Modbus Function Code 4)

Like the 4x holding registers, 3x input registers are used for reading analog values that
are 16-bit register values. You can also use these registers to store floating-point data
(page 63). Unlike the 4x registers, 3x registers are Read Only.

The following illustration shows a sample command to read Modbus addresses 30021 to
30030 of Modbus Slave Device Address 1.

Parameter Description

Enable = 1 The module will send the command every time it goes through the command
list.

Internal Address = 1010 Places the data read from the slave device into the module at address 1010.
Internal Address 1010 of the module memory will be copied into the tag
MCMR.DATA.READDATA[10].

Reg Count = 10 Reads 10 consecutive registers from the slave device.

Node Address = 1 Issues the Modbus command to Modbus Slave Device Address 1.

Modbus Function =4 Issues Modbus Function Code 4 to Read Input Registers.

MB Address in Device =20 Function Code 4 MB Address in Device of 20 will read address 30021
Along with a count of 10, this command reads 30021 to 30030.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 58 of 206

Read Coil Status 0x (Modbus Function Code 1)

Modbus Function Code 1 reads the Coils addressed at 0001 to 9999 from a slave device.
These are bit values that are read using Modbus Function Code 1, and can be written to
using Function Code 5 or 15. Within a Slave device, this is an individual bit value. Thus,
the Internal Address field must be defined down to the bit level within your MasterCmd.

The following illustration shows a sample command to read Modbus addresses 0321 to
0480 from Modbus Slave Device Address 1.

Parameter Description

Enable = 1 The module will send the command every time it goes through the command list.

Internal Address = 16320 Places the data read from the slave device into the module at address 16320.
Internal Address 16320 of the module memory will be copied into the tag
MCMR.DATA.READDATA[20] because 16320 represents a bit address within the
memory of the MVI56E-MCMR module (16320 / 16 = register 1020).

Reg Count = 160 Reads 160 consecutive bits from the Slave device.

Node Address = 1 Issues the Modbus command to Modbus Slave Device Address 1.

Modbus Function =1 Issues Modbus Function Code 1 to Read Coils.

MB Address in Device =
320

Function Code 1, MB Address in Device of 320 will read address 0321
Along with a count of 160, this command reads 0321 to 0480.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 59 of 206

Read Input Status 1x (Modbus Function Code 2)

Use this command to read Input Coils from a slave device. These are single bit
addresses within a Modbus slave device. Unlike Coils 0x, the Input Coils are Read Only
values and cannot be written to by a Modbus Master device. Also like the Coils 0x, the
Internal Address field of this command is defined down to the bit level within the module
memory.

The following illustration shows a sample command to read Modbus addresses 10081 to
10090 of Modbus Slave Device Address 1.

Parameter Description

Enable = 1 The module will send the command every time it goes through the command list.

Internal Address = 16480 Places the data read from the slave device into the module at address 16480.
Internal Address 16480 of the module memory will be copied into the tag
MCMR.DATA.READDATA[30] (bit16480 / 16 = register 1030).

Reg Count = 16 Reads 16 consecutive registers from the slave device.

Node Address = 1 Issues the Modbus command to Modbus Slave Device Address 1.

Modbus Function =2 Issues Modbus Function Code 2 to Read Input Coils.

MB Address in Device = 80 Function Code 2, MB Address in Device of 80 will read address 10081
Along with a count of 16, this command reads 10081 to 10096.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 60 of 206

Preset (Write) Single Coil 0x (Modbus Function Code 5)

Used to write a Coil of a slave device, these are single-bit addresses within a Modbus
slave device. The Internal Address field of this command is defined down to the bit level
within the module memory, and should come from an area of memory that has been
defined within the MCMR.DATA.WRITEDATA area (this is configured within BACKPLANE

CONFIGURATION).

The following illustration shows a sample command to write Modbus addresses 0513 of
Modbus Slave Device Address 1, only when the data associated with the Internal
Address has changed.

Parameter Description

Enable = 2 The module will send the command only when the data within the Internal
Address field of the module has changed.

Internal Address = 160 Will write the data to the slave device when the value at WriteData[10].0
has changed. Because this is a bit-level command, the Internal Address
field must be defined down to the bit level.

Reg Count = 1 Will write a single bit to the device (Function Code 5 will 1 support a count
of 1).

Node Address = 1 Issues the Modbus command to Modbus Slave Device Address 1.

Modbus Function = 5 Issues Modbus Function Code 5 to write a single coil.

MB Address in Device = 512 Function Code 5, MB Address in Device of 512 will read address 0513

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 61 of 206

Write Multiple Coils 0xxx (Modbus Function Code 15)

Use this function code to write multiple Coils in the 0x address range. This function code
sets multiple Coils within a slave device using the same Modbus command. Not all
devices support this function code. Refer to your slave device documentation before
implementing this function code.

This function code will also support the Enable code of 2, to write the data to the slave
device only when the data associated within the Internal Address field of the module has
changed. The Internal Address is once again defined down to the bit level as a Function
Code 15 is a bit level Modbus function.

The following illustration shows a sample command to write Modbus addresses 0001 to
0016 of Modbus Slave Device Address 1.

Parameter Description

Enable = 2 The module will send the command to the slave device only when the data
associated within the Internal Address of the MVI56E-MCMR module memory
has changed.

Internal Address = 320 Writes the data in bit 320 of the module memory to the slave device. Based
on the BACKPLANE CONFIGURATION setting, this would be the data in
MCMR.DATA.WRITEDATA[20].0 to [20].15 in the ladder logic.

Reg Count = 16 Writes 16 consecutive bits to the slave device.

Node Address = 1 Issues the Modbus command to Modbus Slave Device Address 1.

Modbus Function =15 Issues Modbus Function Code 15 to write multiple coils.

MB Address in Device = 0 Function Code 15, MB Address in Device of 0 will read address 0001
Along with a count of 16, this command writes to 0001 to 0016.

Preset (Write) Single Register 4x (Modbus Function Code 6)

Used to write to Modbus Holding Registers 4x, this function code will write a single
register to the slave device. The Enable code can be set to a value of 1 for a continuous
write, or a value of 2 to write the data to the slave device only when the data associated
with the Internal Address field has changed.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 62 of 206

The following illustration shows a sample command to write Modbus addresses 41041 of
Modbus Slave Device Address 1.

Parameter Description

Enable = 1 The module will send the command every time it goes through the
command list.

Internal Address = 5 Writes the data from address 5 of the module memory to the slave device.
Based on the BACKPLANE CONFIGURATION, this will take the data from
MCMR.DATA.WRITEDATA[5] and write that information out to the slave
device.

Reg Count = 1 Writes 1 register (16-bit) to the slave device.

Node Address = 1 Issues the Modbus command to Modbus Slave Device Address 1.

Modbus Function =2 Issues Modbus Function Code 6 to write a single register.

MB Address in Device = 1040 Function Code 6, MB Address in Device of 1040 will write to address
41041 of the Modbus slave device.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 63 of 206

Preset (Write) Multiple Registers 4x (Modbus Function Code 16)

Used to write to Modbus Holding Registers 4x, this function code will write multiple
registers to the slave device. The Enable code can be set to a value of 1 for a continuous
write, or a value of 2 to write the data to the slave device only when the data associated
with the Internal Address field has changed.

The following illustration shows a sample command to write Modbus addresses 41051 to
41060 of Modbus Slave Device Address 1.

Parameter Description

Enable = 2 The module will send the command only when the data associated with the
Internal Address of the module has changed.

Internal Address =30 Writes the data from Internal Address 30 of the module memory to the
Slave device. Based on the BACKPLANE CONFIGURATION, this will write the
data from MCMR.DATA.WRITEDATA[30] TO [39] to the Slave device.

Reg Count = 10 Writes 10 consecutive registers to the slave device.

Node Address = 1 Issues the Modbus command to Modbus Slave Device Address 1.

Modbus Function =16 Issues Modbus Function Code 16 to write Holding Registers.

MB Address in Device = 1050 Function Code 16, MB Address in Device of 1050 will write address 41051.
Along with a count of 10, this command writes 41051 to 41060 of the slave
device.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 64 of 206

2.3.7 Floating-Point Data Handling (Modbus Master)

In many applications, it is necessary to read or write floating-point data to the slave
device. The sample program only provides an INT array for the ReadData and Write Data
array (16-bit signed integer value). In order to read/write floating-point data to and from
the slave device, you must add additional ladder logic to handle the conversion of the
data to a REAL data type within the ControlLogix processor. This is very easy to
accomplish.

The following topics show how to read or write data to a slave device. These topics also
show when to use the Float Flag and Float Start parameters within the module
configuration. For all applications, floating-point data can be read from a device without
any changes to the Float Flag and Float Start parameters. You only need to configure
these parameters to issue a Write command to a device that uses a single Modbus
address, such as 47001, to represent a single floating-point value.

Read Floating-Point Data

Here is the addressing of a slave device, with a parameter "Energy Consumption" that is
shown as two registers 40257 and 40258.

Value Description Type

40257 -------- KWH Energy Consumption Float, lower 16 bits

40258 KWH Energy Consumption Float, upper 16 bits

To issue a Read command to this parameter, use the following configuration.

Parameter Description

Enable = 1 Sends the command every time through the command list.

Internal Address = 1000 Places data at address 1000 of the module memory. Based on the
configuration in ModDef this will put the data at the tag
MCMR.DATA.READDATA[0].

Poll Interval = 0 No delay for this command.

Count = 2 Reads 2 consecutive registers from the Slave device. These 2
Modbus registers will make up the "Energy Consumption" floating-
point value.

Swap = 0 Swap Code Description

0 None - No Change is made in the byte ordering
(1234 = 1234)

1 Words - The words are swapped (1234 = 3412)

2 Words & Bytes - The words are swapped then the
bytes in each word are swapped (1234 = 4321)

3 Bytes - The bytes in each word are swapped
(1234 = 2143)

Node = 1 Sends the command to Modbus Slave Device Address 1.

Func = 3 Issues a Modbus Function Code 3 to "Read Holding registers."

MB Address in Device = 256 Along with the Function Code 3, MB Address in Device 256 will read
Modbus address 40257 of the Slave device.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 65 of 206

Along with the Function Code 3, MB Address in Device 256 will read Modbus address
40257 of the slave device. The above command will read 40257 and 40258 of the
Modbus Slave #1 and place that data in MCMR.DATA.READDATA[0] and [1].

Within the controller tags section of the ControlLogix processor, it is necessary to
configure a tag with the data type of "REAL" as shown in the following illustration.

[+] Energy_Consumption REAL[1] Float

Copy data from the MCMR.DATA.READDATA[0] and [1] into the tag
ENERGY_CONSUMPTION that has a data type of REAL. Use a COP statement within the
ladder logic. Here is an example.

Because the tag MCMR.DATA.READDATA[0] should only be used within the above
command, an unconditional COP statement can be used.

Notice the length of the COP statement is a value of 1. Within a Rockwell Automation
processor, a COP statement will copy the required amount of "Source" values to fill the
"Dest" tag for the Length specified.

Therefore, the above statement will copy ReadData[0] and [1] to fill the 32 bits required
for the tag "Energy_Consumption".

Note: Do not use a MOV statement. A MOV will convert the data from the Source register to the destination
register data type. This would create a data casting statement and will result in the loss or corruption of the
original data.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 66 of 206

Read Multiple Floating-Point Registers

The following table is an example to read Multiple Floating-Point values and device
addresses. The table shows 7 consecutive floating-point values (14 Modbus addresses).

Value Description Type

40261 KW Demand (power) Float. upper 16 bits

40263 VAR Reactive Power Float. upper 16 bits

40265 VA Apparent Power Float. upper 16 bits

40267 Power Factor Float. upper 16 bits

40269 VOLTS Voltage, line to line Float. upper 16 bits

40271 VOLTS Voltage, line to neutral Float. upper 16 bits

40273 AMPS Current Float. upper 16 bits

Configure the command to read these 7 floats as follows.

Configure an array of 7 floats within the ControlLogix processor as shown in the following
illustration.

The following COP statement will copy the data from MCMR.DATA.READDATA[0] TO [13]
into the array MCM_FLOAT_DATA[0] TO [6].

The "Length" parameter is set to the number of Floating-Point values that must be copied
from the MCMR.DATA.READDATA array.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 67 of 206

Write Floats to Slave Device

To issue a Write command to Floating-Point addresses, use the configuration in the
following table. The table describes the Modbus Map for the slave device.

Value Description Type

40261 KW Demand (power) Float. upper 16 bits

40263 VAR Reactive Power Float. upper 16 bits

40265 VA Apparent Power Float. upper 16 bits

40267 Power Factor Float. upper 16 bits

40269 VOLTS Voltage, line to line Float. upper 16 bits

40271 VOLTS Voltage, line to neutral Float. upper 16 bits

40273 AMPS Current Float. upper 16 bits

Use a COP statement to copy the data from floating-point data tags within the
ControlLogix processor, into the MCMR.DATA.WRITEDATA array used by the MVI56E-
MCMR module. Below is an example.

The length of this COP statement must now be 14. This will COP as many of the
MCM_FLOAT_DATA values required to occupy the MCMR.DATA.WRITEDATA array for a
length of 14. This will take 7 registers, MCM_FLOAT_DATA[0] TO [6], and place that data
into MCMR.DATA.WRITEDATA[0] TO [13].

You must configure the command to write all 7 floats (14 Modbus addresses) as follows.

The above command will take the data from MCMR.DATA.WRITEDATA[0] TO [13] and
write this information to Modbus Slave Device Address 1 at data addresses 40261 to
40274.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 68 of 206

Read Floats with Single Modbus Register Address (Enron/Daniel Float)

Some Modbus slave devices use a single Modbus address to store 32 bits of data. This
type of data is typically referred to as Enron or Daniel Floating-Point.

A device that uses this addressing method may have the following Modbus Memory Map.

Address Data Type Parameter

47001 32 bit REAL Demand

47002 32 bit REAL Reactive Power

47003 32 bit REAL Apparent Power

47004 32 bit REAL Power Factor

47005 32 bit REAL Voltage: Line to Line

47006 32 bit REAL Voltage: Line to Neutral

47007 32 bit REAL Current

This type of device uses one Modbus address per floating-point register. To read these
values from the Slave device, configure the following command within the module.

Notice that the count is now set to a value of 7. Because the Slave device utilizes only 7
Modbus addresses, a count of 7 will cause the Slave to respond with 14 registers (28
bytes) of information.

Important: This command will still occupy 14 register within the MCMR.DATA.READDATA array. You must
not use addresses 1000 to 1013 in the Internal Address field for any other Modbus Master commands.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 69 of 206

The COP statement for this type of data is the same as shown in Read Multiple Floating-
Point Registers (page 66).

Write to Enron/Daniel Floats

To issue a Write command to Enron/Daniel Floats, use the Float Flag and Float Start
parameters within the ModDef controller tags. The following table describes the
addresses that will be written to by the module.

Address Data Type Parameter

47001 32 bit REAL Demand

47002 32 bit REAL Reactive Power

47003 32 bit REAL Apparent Power

47004 32 bit REAL Power Factor

47005 32 bit REAL Voltage: Line to Line

47006 32 bit REAL Voltage: Line to Neutral

47007 32 bit REAL Current

Configure the Float Start and Float Flag parameters as shown.

The Float Flag causes the module to use the Float Start parameter to determine which
MB Address in Device requires a write command to issue double the number of bytes.

With the above configuration, any MB Address in Device > 7000 is known to be floating-
point data. Therefore, a count of 1 will send 4 bytes of data, instead of the normal 2 bytes
of data to a non-Enron/Daniel floating-point register.

1 First, copy the floating-point data from the ControlLogix processor into the
MCMR.DATA.WRITEDATA array used by the MVI56E-MCMR module. Below is an
example.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 70 of 206

2 The length of this COP statement must now be 14. This will COP as many of the
MCM_FLOAT_DATA values required to occupy the MCMR.DATA.WRITEDATA array for
a length of 14. This will take 7 registers, MCM_FLOAT_DATA[0] TO [6], and place that
data into MCMR.DATA.WRITEDATA[0] TO [13].

The following illustration shows the command required to write these 7 Floating-Point
values.

Based on the Internal Address and the configuration within the BACKPLANE

CONFIGURATION section for Write Register Start and Write Register Count, the data from
the tag MCMR.DATA.WRITEDATA[0] TO [6] will be written to Modbus addresses 47001 to
47007 of Modbus Slave Device Address 1.

Note: A swap code may be required to put the data in the proper format for the slave device.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 71 of 206

2.4 Configuration as a Modbus Slave

2.4.1 Overview

When configuring the module as a slave, you will be providing a Modbus Memory Map to
the person who is programming the Master side of the communications.

Note: If you are using the Sample Ladder Logic, the transfer of data is already done.

Information that is to be read by the Modbus Master device will be placed in the
MCMR.DATA.WRITEDATA array as this will be pushed out to the module so that values
from the ControlLogix processor can be read by the Modbus Master. Information that
must be written to the ControlLogix processor from the Modbus Master device will be
placed into the MCMR.DATA.READDATA array.

To configure module as a Modbus Slave, you must determine how much data you must
transfer to and from the module, to the Modbus Master.

The sample ladder file is configured to transfer 600 16-bit registers in each direction. If
more than that is required, please see Applications Requiring More Than 600 Registers
of ReadData or WriteData.

2.4.2 Configuration File Settings

To configure Modbus slave mode, use the BACKPLANE CONFIGURATION settings.

This section specifies which of the MVI56E-MCMR module's 5000 registers of memory to
send from the ControlLogix processor to the MVI56E-MCMR module (WriteData) and
which registers to send from the MVI56E-MCMR module to the ControlLogix processor
(ReadData).

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 72 of 206

The WRITE REGISTER START determines the starting register location for WRITEDATA [0 TO

599] and the WRITE REGISTER COUNT determines how many of the 5000 registers to use
for information to be written out to the module. The sample ladder file will configure 600
registers for Write Data, labeled MCM.WRITEDATA[0 TO 599].

Value Description

Error/Status Block Pointer This parameter places the STATUS data into the database of the module. This
information can be read be the Modbus Master to know the status of the module.

Read Register Start Determines where in the 5000 register module memory to begin obtaining data to
present to the ControlLogix processor in the ReadData tags.

Read Register Count Sets how many registers of data the MVI56E-MCMR module will send to the
ControlLogix processor. This value should also be a multiple of 40.

Write Register Start Determines where in the 5000 register module memory to place the data
obtained from the ControlLogix processor from the WriteData tags.

Write Register Count Sets how many registers of data the MVI56E-MCMR module will request from
the ControlLogix processor. Because the module pages data in blocks of 40
words, this number must be evenly divisible by 40.

Backplane Fail Count Sets the consecutive number of backplane failures that will cause the module to
stop communications on the Modbus network.

With the sample configuration, the following is the layout of the tags and addressing.

The sample configuration values configure the module database for WRITEDATA[0 TO

599] to be stored in the module memory at register 0 to 599, and READDATA[0 TO 599] to
be stored in the module memory at registers 1000 to 1599 as shown above.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 73 of 206

Modbus Memory Map

Based on the configuration described above, below is the default Modbus address for the
module. Each register within the module can be accessed as a 0x bit address, 1x bit
address, 3x register address, or 4x register address.

MVI Address 0x 1x 3x 4x Tag Address

0 0001 to 0016 10001 to 10016 30001 40001 WriteData[0]

1 0017 to 0032 10017 to 10032 30002 40002 WriteData[1]

2 0033 to 0048 10033 to 10048 30003 40003 WriteData[2]

3 0049 to 0064 10049 to 10064 30004 40004 WriteData[3]

4 0065 to 0080 10065 to 10080 30005 40005 WriteData[4]

5 0081 to 0096 10081 to 10096 30006 40006 WriteData[5]

6 0097 to 0112 10097 to 10112 30007 40007 WriteData[6]

7 0113 to 0128 10113 to 10128 30008 40008 WriteData[7]

8 0129 to 0144 10129 to 10144 30009 40009 WriteData[8]

9 0145 to 0160 10145 to 10160 30010 40010 WriteData[9]

10 0161 to 0176 10161 to 10176 30011 40011 WriteData[10]

50 0801 to 0816 10801 to 10816 30051 40051 WriteData[50]

100 1601 to 1616 11601 to 11616 30101 40101 WriteData[100]

200 3201 to 3216 13201 to 13216 30201 40201 WriteData[200]

500 8001 to 8016 18001 to 18016 30501 40501 WriteData[500]

598 9569 to 9584 19569 to 19584 30599 40599 WriteData[598]

599 9585 to 9600 19585 to 19600 30600 40600 WriteData[599]

600 to 999 N/A N/A N/A N/A Reserved

1000 31001* 41001 ReadData[0]

1001 31002* 41002 ReadData[1]

1002 31003* 41003 ReadData[2]

1003 31004* 41004 ReadData[3]

1004 31005* 41005 ReadData[4]

1005 31006* 41006 ReadData[5]

1006 31007* 41007 ReadData[6]

1007 31008* 41008 ReadData[7]

1008 31009* 41009 ReadData[8]

1009 31010* 41010 ReadData[9]

1010 31011* 41011 ReadData[10]

1050 31051* 41051 ReadData[50]

1100 31101* 41101 ReadData[100]

1200 31201* 41201 ReadData[200]

1500 31501* 41501 ReadData[500]

1598 31599* 41599 ReadData[598]

1599 31600* 41600 ReadData[599]

The above address chart will work with many Modbus applications. Values listed in the
ReadData array for 31001 to 31600 are shown with an * beside them.

Although these are valid addresses, they will not work in the application. The Master must
issue a Write command to the addresses that correspond to the READDATA array. For
Modbus addresses 3x, these are considered Input registers, and a Modbus Master does
not have a function code for this type of data.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 74 of 206

Customizing the Memory Map

In some cases, the above memory map will not work for the application. Sometimes a
Master must read bits starting at address 0001, and must also read a register starting at
40001. With the memory map in this example (page 73), this is not possible, as
WRITEDATA[0] is seen as both 0001 to 0016, and 40001. To accommodate this, you can
customize the starting location within the module for each device using the parameters
shown below.

Parameter Value Description

Bit Input Offset 0 Defines the starting address within the module for 1x Modbus
addressing. A value of 0 sets 10001 to 10016 as address 0 in the
MVI56E-MCMR module.

Word Input Offset 10 Defines the starting address within the module memory for 3x
registers.

Output Offset 1000 Defines the starting address within the module for 0x coils.

Holding Register Offset 1010 Defines the starting address within the module for 4x addressing.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 75 of 206

Based on the configuration described above for the ModDef section of the module and
the values specified for the offset parameters, below is the Modbus addressing map for
the module.

MVI Address 0x 1x 3x 4x Tag Address

0 10001 to 10016 WriteData[0]

1 10017 to 10032 WriteData[1]

9 10145 to 10160 WriteData[9]

10 10161 to 10176 30001 WriteData[10]

11 10177 to 10192 30002 WriteData[11]

100 11601 to 11616 30091 WriteData[100]

200 13201 to 13216 30191 WriteData[200]

500 18001 to 18016 30491 WriteData[500]

598 19569 to 19584 30489 WriteData[598]

599 19585 to 19600 30490 WriteData[599]

600 to 999 N/A N/A N/A N/A Reserved

1000 0001 to 0016 ReadData[0]

1001 0017 to 0032 ReadData[1]

1009 0145 to 0160 ReadData[9]

1010 0161 to 0176 40001 ReadData[10]

1011 0177 to 0192 40002 ReadData[11]

1050 0801 to 0816 40041 ReadData[50]

1100 1601 to 1616 40091 ReadData[100]

1200 3201 to 3216 40191 ReadData[200]

1500 8001 to 8016 40491 ReadData[500]

1598 9569 to 9584 40589 ReadData[598]

1599 9585 to 9600 40590 ReadData[599]

With the offset parameters listed above, the Modbus Master could read from coils 10001
to 10176 using the tags MCMR.DATA.WRITEDATA[0] TO [9]. The Master could also read
from address 30001 to 30490, and the data contained in those Modbus addresses would
come from the tags MCMR.DATA.WRITEDATA[10] TO [499] within the ControlLogix
program.

The Master could then write to coils addressing 0001 to 0160 and this data would reside
within the ControlLogix program in tags MCMR.DATA.READDATA[0] TO [9]. The Master
could then write to registers using Modbus addresses 40001 to 40590, and this
information would reside in addresses MCMR.DATA.READDATA[10] TO [599].

Note: The offset parameter only set the starting location for the data. As shown above, if the Master issues a
Write command to address 40001, the data will go into the ControlLogix processor at address
MCMR.DATA.READDATA[10].

Likewise, a Write To bit address 0161 will also change to address
MCMR.DATA.READDATA[10].0 within the program. Be careful not to overlap your data.
You may want leave additional registers/bits unused to allow for future expansion in the
program.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 76 of 206

2.4.3 Slave Configuration

Value Description

Enabled 1 = Enable port, 0 = Disable port

Type 1 = Modbus Slave Port

Protocol 0 = Modbus RTU mode, 1 = Modbus ASCII mode

Baud Rate Sets the baud rate for the port. Valid values for this field are 110, 150, 300,
600, 1200, 2400, 4800, 9600, 19200, 384 or 3840 (for 38,400 baud), 576 or
5760 (for 57,600 baud) and 115,1152, or 11520 (for 115,200 baud)

Parity 0 = None, 1 = Odd, 2 = Even

Data Bits 8 = Modbus RTU mode, 8 or 7 = Modbus ASCII mode

Stop Bits Valid values are 1 or 2

RTS On 0 to 65535 milliseconds to delay after RTS line is asserted on the port before
data message transmission begins. This delay can be used to allow for radio
keying or modem dialing before data transmission begins.

RTS Off 0 to 65535 milliseconds to delay after data message is complete before RTS
line is dropped on the port.

Use CTS Line NO or YES
This parameter is used to enable or disable hardware handshaking. The
default setting is NO hardware handshaking, CTS Line not used. Set to NO if
the connected devices do not need hardware handshaking. Set to YES if the
device(s) connected to the port require hardware handshaking (most modern
devices do not). If you set this parameter to YES, be sure to pay attention to
the pinout and wiring requirements to ensure that the hardware handshaking
signal lines are properly connected; otherwise communication will fail.

Float Flag As a Slave, emulates Enron/Daniel style floats. See Floating Point Data
Handling for more information (page 77).

Float Start Register offset in message for floating data point. See Floating Point Data
Handling for more information (page 77).

Float offset Internal address for floats

Internal Slave ID Valid values are 1 to 247

Minimum Response Delay 0 to 65535 milliseconds to delay before response

Bit Input Offset Defines the starting address within the module for 1x Modbus addressing. A
value of 0 sets 10001 to 10016 as address 0 in the MVI56E-MCMR module.

Word Input Offset Defines the starting address within the module memory for 3x registers.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 77 of 206

Value Description

Output Offset Defines the starting address within the module for 0x coils.

Holding Register Offset Defines the starting address within the module for 4x addressing.

Use Guard Band Timer YES or NO
Packet gap timeout for messages

Guard Band Timeout 0 to 65535
A value of 0 uses the default baud rate, or you can set a timeout value in
milliseconds.

2.4.4 Floating-Point Data Handling (Modbus Slave)

In most applications, the use of floating-point data requires no special handling.

1 Copy the data to and from the MVI56E-MCMR module with a tag configured as a data
type REAL in the ControlLogix processor.

Each floating-point value will occupy 2 registers on the Modbus network.
Some Master devices use Enron or Daniel Float data. These types of floats require
one Modbus register for each float in the module memory. If your Master requires this
addressing, refer to the following section.
For standard floating-point data handling, the following is an example of copying 10
floats to the module.

2 First, configure a tag within the ControlLogix processor.

3 Then configure a COP statement within the main routine to copy this tag to the
module’s MCMR.DATA.WRITEDATA array.

The length of the copy statement is determined by the Dest file size. To copy 10 floats
from the MCM_Write_Floats array to the MCMR.DATA.WRITEDATA array, the length of
the COP statement must be set to a value of 20.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 78 of 206

To copy data from the MVI56E-MCMR module to a floating-point tag within the
ControlLogix processor.

1 Configure a tag within the ControlLogix processor as shown.

2 Then configure the COP statement to move data from the MCMR.DATA.READDATA

array, and over to the new tag MCM_READ_FLOATS tag as shown here.

Once again, the COP statement will take as many of the Source elements required to fill
the Dest tag for the length specified. Therefore, the COP statement will take
MCMR.DATA.READDATA[0] TO [19] to fill the MCM_READ_FLOATS[0] TO [9].

Enron/Daniel Float Configuration

Sometimes it is necessary for the module to emulate Enron or Daniel floating-point
addressing.

Copying the data to the MCMR.DATA.WRITEDATA array and from the
MCMR.DATA.READDATA array is the same as described in the section above. The main
difference is the addressing of the module.

For example, an Enron Float device is required to access address 47001 for floating-point
data, and each Modbus register would emulate a single float value (does not require 2
Modbus addresses for 1 float value).

A Master device requiring this type of addressing, would require that for every count of 1,
the MVI56E-MCMR module responds to the request message with 4 bytes (one 32-bit
REAL) value.

To emulate this addressing, the module has the parameters FLOAT FLAG, FLOAT START,
and FLOAT OFFSET.

Value Description

Float Flag Tells the module to use the Float Start and Float Offset parameters listed below

Float Start Determines what starting address on the Modbus network to treat as floating-point
data. A value of 7000 will signal the module that address 47001 on the Modbus
network is the starting location for Modbus floating-point data. Every address will
occupy 2 registers within the module's database.

Float Offset Determines the address within the module to which to associate the data from the
Float Start section.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 79 of 206

Here is a sample configuration for the module.

With the above configuration, this would be the addressing for the module.

Module Address Modbus Address Tag Address

100 47001 MCMR.DATA.WriteData[100]

102 47002 MCMR.DATA.WriteData[102]

104 47003 MCMR.DATA.WriteData[104]

110 47006 MCMR.DATA.WriteData[110]

120 47011 MCMR.DATA.WriteData[120]

200 47051 MCMR.DATA.WriteData[200]

300 47101 MCMR.DATA.WriteData[300]

500 47201 MCMR.DATA.WriteData[500]

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 80 of 206

2.5 Ethernet Configuration

Use this procedure to configure the Ethernet settings for your module. You must assign
an IP address, subnet mask and gateway address. After you complete this step, you can
connect to the module with an Ethernet cable.

1 Determine the network settings for your module, with the help of your network
administrator if necessary. You will need the following information:

o IP address (fixed IP required) _____ . _____ . _____ . _____
o Subnet mask _____ . _____ . _____ . _____
o Gateway address _____ . _____ . _____ . _____

Note: The gateway address is optional and is not required for networks that do not use a default gateway.

2 Double-click the ETHERNET CONFIGURATION icon. This action opens the Edit dialog
box.

3 Edit the values for my_ip, netmask (subnet mask) and gateway (default gateway).
4 When you are finished editing, click OK to save your changes and return to the

ProSoft Configuration Builder window.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 81 of 206

2.6 Connecting Your PC to the Module's Ethernet Port

ith the module securely mounted, connect one end of the Ethernet cable to the CONFIG

(E1) Port, and the other end to an Ethernet hub or switch accessible from the same
network as your PC. Or, you can connect directly from the Ethernet Port on your PC to
the CONFIG (E1) Port on the module.

2.6.1 Setting Up a Temporary IP Address

Important: ProSoft Configuration Builder locates MVI56E-MCMR modules through UDP broadcast
messages. These messages may be blocked by routers or layer 3 switches. In that case, ProSoft Discovery
Service will be unable to locate the modules.

To use ProSoft Configuration Builder, arrange the Ethernet connection so that there is no router/ layer 3
switch between the computer and the module OR reconfigure the router/ layer 3 switch to allow routing of the
UDP broadcast messages.

1 In the tree view in ProSoft Configuration Builder, select the MVI56E-MCMR module.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 82 of 206

2 Click the right mouse button to open a shortcut menu. On the shortcut menu, choose
DIAGNOSTICS.

3 In the Diagnostics window, click the SET UP CONNECTION button.

4 In the Connection Setup dialog box, click the BROWSE DEVICE(S) button to open the
ProSoft Discovery Service. Select the module, then right-click and choose ASSIGN

TEMPORARY IP.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 83 of 206

5 The module’s default IP address is 192.168.0.250. Choose an unused IP within your
subnet, and then click OK.

Important: The temporary IP address is only valid until the next time the module is initialized. For information
on how to set the module’s permanent IP address, see Ethernet Configuration (page 80).

6 Close the ProSoft Discovery Service window. Enter the temporary IP in the Ethernet
address field of the Connection Setup dialog box, then click the TEST CONNECTION

button to verify that the module is accessible with the current settings.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 84 of 206

7 If the Test Connection is successful, click CONNECT. The Diagnostics menu will
display in the Diagnostics window.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 85 of 206

2.7 Downloading the Project to the Module

Note: For alternative methods of connecting to the module with your PC, refer to Using CIPconnect to
Connect to the Module (page 87) or Using RSWho to Connect to the Module (page 97).

In order for the module to use the settings you configured, you must download (copy) the
updated Project file from your PC to the module.

1 In the tree view in ProSoft Configuration Builder, click once to select the MVI56E-
MCMR module.

2 Open the PROJECT menu, and then choose MODULE / DOWNLOAD.

This action opens the Download dialog box. Notice that the Ethernet address field
contains the temporary IP address you assigned previously. ProSoft Configuration
Builder will use this temporary IP address to connect to the module.

Click TEST CONNECTION to verify that the IP address allows access to the module.

3 If the connection succeeds, click DOWNLOAD to transfer the Ethernet configuration to
the module.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 86 of 206

If the Test Connection procedure fails, you will see an error message. To correct the
error, follow these steps.

1 Click OK to dismiss the error message.
2 In the Download dialog box, click BROWSE DEVICE(S) to open ProSoft Discovery

Service.

3 Select the module, and then click the right mouse button to open a shortcut menu. On
the shortcut menu, choose SELECT FOR PCB.

4 Close ProSoft Discovery Service.
5 Click DOWNLOAD to transfer the configuration to the module.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 87 of 206

2.7.1 Using CIPconnect® to Connect to the Module

You can use CIPconnect® to connect a PC to the ProSoft Technology MVI56E-MCMR
module over Ethernet using Rockwell Automation’s 1756-ENBT EtherNet/IP® module.
This allows you to configure the MVI56E-MCMR network settings and view module
diagnostics from a PC. RSLinx is not required when you use CIPconnect. All you need
are:

• The IP addresses and slot numbers of any 1756-ENBT modules in the path

• The slot number of the MVI56E-MCMR in the destination ControlLogix chassis (the
last ENBTx and chassis in the path).

To use CIPconnect, follow these steps.

1 In the Select Port dropdown list, choose 1756-ENBT. The default path appears in the
text box, as shown in the following illustration.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 88 of 206

2 Click CIP PATH EDIT to open the CIPconnect Path Editor dialog box.

The CIPconnect Path Editor allows you to define the path between the PC and the
MVI56E-MCMR module. The first connection from the PC is always a 1756-ENBT
(Ethernet/IP) module.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 89 of 206

Each row corresponds to a physical rack in the CIP path.

• If the MVI56E-MCMR module is located in the same rack as the first 1756-ENBT
module, select RACK NO. 1 and configure the associated parameters.

• If the MVI56E-MCMR is available in a remote rack (accessible through ControlNet or
Ethernet/IP), include all racks (by using the ADD RACK button).

Parameter Description

Source Module Source module type. This field is automatically selected depending on
the destination module of the last rack (1756-CNB or 1756-ENBT).

Source Module IP Address IP address of the source module (only applicable for 1756-ENBT)

Source Module Node Address Node address of the source module (only applicable for 1756-CNB)

Destination Module Select the destination module associated to the source module in the
rack. The connection between the source and destination modules is
performed through the backplane.

Destination Module Slot Number The slot number where the destination MVI56E module is located.

To use the CIPconnect Path Editor, follow these steps.

1 Configure the path between the 1756-ENBT connected to your PC and the MVI56E-
MCMR module.

o If the module is located in a remote rack, add more racks to configure the full path.
o The path can only contain ControlNet or Ethernet/IP networks.
o The maximum number of supported racks is six.

2 Click CONSTRUCT CIP PATH to build the path in text format
3 Click OK to confirm the configured path.

The following examples should provide a better understanding on how to set up the path
for your network.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 90 of 206

Example 1: Local Rack Application

For this example, the MVI56E-MCMR module is located in the same rack as the 1756-
ENBT that is connected to the PC.

Rack 1

Slot Module Network Address

0 ControlLogix Processor -

1 Any -

2 MVI56E-MCMR -

3 1756-ENBT IP = 192.168.0.100

1 In the Download dialog box, click CIP PATH EDIT.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 91 of 206

2 Configure the path as shown in the following illustration, and click CONSTRUCT CIP

PATH to build the path in text format.

3 Click OK to close the CIPconnect Path Editor and return to the Download dialog box.
4 Check the new path in the Download dialog box.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 92 of 206

5 Click TEST CONNECTION to verify that the physical path is available. The following
message should be displayed upon success.

6 Click OK to close the Test Connection pop-up and then click DOWNLOAD to download
the configuration files to the module through the path.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 93 of 206

Example 2: Remote Rack Application

For this example, the MVI56E-MCMR module is located in a remote rack accessible
through ControlNet, as shown in the following illustration.

Rack 1

Slot Module Network Address

0 ControlLogix Processor -

1 1756-CNB Node = 1

2 1756-ENBT IP = 192.168.0.100

3 Any -

Rack 2

Slot Module Network Address

0 Any -

1 Any -

2 Any -

3 Any -

4 Any -

5 1756-CNB Node = 2

6 MVI56E-MCMR -

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 94 of 206

1 In the Download dialog box, click CIP PATH EDIT.

2 Configure the path as shown in the following illustration and click CONSTRUCT CIP

PATH to build the path in text format.

3 Click OK to close the CIPconnect Path Editor and return to the Download dialog box.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 95 of 206

4 Check the new path in the Download dialog box.

5 Click TEST CONNECTION to verify that the physical path is available. The following
message should be displayed upon success.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 96 of 206

6 Click DOWNLOAD to download the configuration files to the module through the path.

MVI56E-MCMR ♦ ControlLogix® Platform Configuring the MVI56E-MCMR Module
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 97 of 206

2.7.2 Using RSWho to Connect to the Module

RSLinx must be installed on your PC to use this feature. An ENBT module must also be configured in the
rack. For information on setting up the ENBT module, see Using CIPconnect to Connect to the Module (page
87).

1 In the tree view in ProSoft Configuration Builder, right-click the MVI56E-MCMR
module.

2 From the shortcut menu, choose DOWNLOAD FROM PC TO DEVICE.
3 In the Download dialog box, choose 1756 ENBT from the Select Connection Type

dropdown box.

4 Click RSWHO to display modules on the network. The MVI56E-MCMR module will
automatically be identified on the network.

5 Select the module, and then click OK.
6 In the Download dialog box, click DOWNLOAD.

MVI56E-MCMR ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 98 of 206

3 Verify Communication

There are several ways to verify that the MVI56E-MCMR module is communicating with
the processor and with the Modbus network.

• View the LED Status Indicators

• View the Module Status in the RSLogix 5000 Controller Tags

• View Diagnostics in ProSoft Configuration Builder

3.1 Verify Master Communications

Within the MVI56E-MCMR module, there are several ways to verify that the Modbus
Master commands are working correctly.

The most common, and detailed method of checking the communications is using the
MODBUS PORT X COMMAND ERROR POINTER parameter. This parameter will tell you the
individual status of each command that is issued by the module.

For example, with the Modbus Port 1 Command Error Pointer set to 1100 to 1101 for
Modbus Master Commands 1 and 2, using the default READ START 600 and READ COUNT

600 in the Backplane Configuration, that data is mapped to ReadData[500] and
ReadData[501].

Another method is to check the MCMR.STATUS.PRTXERRS location for a running count
of commands issued, responses received, errors, and so on.

For example, to check command status for Port 1, toggle the value of the controller tag
MCMR.CONTROL.CMDCONTROLP1.CMDERRTRIGGER. The status data for that command
populates the controller tag MCMR.CONTROL.CMDCONTROLP1.CMDERRDATA[X].

MVI56E-MCMR ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 99 of 206

3.1.1 Status Data Definition as a Master

This section contains a description of the members present in the MCMR.STATUS

object. This data is transferred from the module to the processor as part of each read
block using the module’s Input Image. Sample Ladder Logic will copy this information
from the LOCAL: X: I.DATA {OFFSET} tag into the MCMR.STATUS array.

Offset Content Description

0 Program Scan Count This value is incremented each time a complete program cycle occurs in
the module.

1 to 2 Product Code These two registers contain the product code of "MCM".

3 to 4 Product Version These two registers contain the product version for the current running
software.

5 to 6 Operating System These two registers contain the month and year values for the program
operating system.

7 to 8 Run Number These two registers contain the run number value for the currently
running software.

9 Port 1 Command List
Requests

This field contains the number of requests made from this port to Slave
devices on the network.

10 Port 1 Command List
Response

This field contains the number of Slave response messages received on
the port.

11 Port 1 Command List
Errors

This field contains the number of command errors processed on the
port. These errors could be due to a bad response or command.

12 Port 1 Requests This field contains the total number of messages sent out of the port.

13 Port 1 Responses This field contains the total number of messages received on the port.

14 Port 1 Errors Sent This field contains the total number of message errors sent out of the
port.

15 Port 1 Errors Received This field contains the total number of message errors received on the
port.

16 Port 2 Command List
Requests

This field contains the number of requests made from this port to Slave
devices on the network.

17 Port 2 Command List
Response

This field contains the number of Slave response messages received on
the port.

18 Port 2 Command List
Errors

This field contains the number of command errors processed on the
port. These errors could be due to a bad response or command.

19 Port 2 Requests This field contains the total number of messages sent out the port.

20 Port 2 Responses This field contains the total number of messages received on the port.

21 Port 2 Errors Sent This field contains the total number of message errors sent out the port.

22 Port 2 Errors Received This field contains the total number of message errors received on the
port.

23 Read Block Count This field contains the total number of read blocks transferred from the
module to the processor.

24 Write Block Count This field contains the total number of write blocks transferred from the
module to the processor.

25 Parse Block Count This field contains the total number of blocks successfully parsed that
were received from the processor.

26 Command Event Block
Count

This field contains the total number of command event blocks received
from the processor.

27 Command Block Count This field contains the total number of command blocks received from
the processor.

28 Error Block Count This field contains the total number of block errors recognized by the
module.

29 Port 1 Current Error For a Slave port, this field contains the value of the current error code
returned. For a Master port, this field contains the index of the currently
executing command.

MVI56E-MCMR ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 100 of 206

Offset Content Description

30 Port 1 Last Error For a Slave port, this field contains the value of the last error code
returned. For a Master port, this field contains the index of the command
with the error.

31 Port 2 Current Error For a Slave port, this field contains the value of the current error code
returned. For a Master port, this field contains the index of the currently
executing command.

32 Port 2 Last Error For a Slave port, this field contains the value of the last error code
returned. For a Master port, this field contains the index of the command
with an error.

MVI56E-MCMR ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 101 of 206

3.1.2 Command Error Codes

The MVI56E-MCMR module will return an individual error code for every command
configured within the MODBUS PORT X COMMANDS section. The location of these error
codes are determined by the parameter MODBUS PORT X COMMAND ERROR POINTER. This
parameter determines where in the module's 5000-register database the error codes for
each command will be placed. The number of error codes returned into the database is
determined by the number of commands configured in the Modbus Port x Commands
section of the configuration. For 10 commands, 10 registers will be used; for 100
commands, 100 registers will be used.

To be useful in the application, these error codes must be placed within the
MCMR.DATA.READDATA array.

Once again, the configuration in the BACKPLANE CONFIGURATION section for READ

REGISTER START and READ REGISTER COUNT determine which of the 5000 registers will
be presented to the ControlLogix processor and placed in the tag
MCMR.DATA.READDATA array.

Based on the sample configuration values for READ REGISTER START and READ REGISTER

COUNT, this will be addresses 1000 to 1599 of the module memory. The following
illustration shows the sample configuration values.

MVI56E-MCMR ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 102 of 206

Based on these values shown above, a good place for the MODBUS PORT X COMMAND

ERROR POINTER is address 1500, as shown.

With the COMMAND ERROR POINTER set to address 1500, this will place your Command
Error Data at addresses starting at 1500 of the module memory, and because of the
before mentioned configuration of the BACKPLANE CONFIGURATION READ REGISTER START

and READ REGISTER COUNT parameters, the command error data will be placed into the
tags beginning at MCMR.DATA.READDATA[500].

Each command configured in the MODBUS PORT X COMMANDS will occupy one register
within the READDATA array. For a command list consisting of 100 commands, the
following table is true.

Error Code for Command ReadData Location

1 MCMR.DATA.ReadData[500]

2 MCMR.DATA.ReadData[501]

3 MCMR.DATA.ReadData[502]

4 MCMR.DATA.ReadData[503]

5 MCMR.DATA.ReadData[504]

90 MCMR.DATA.ReadData[598]

99 MCMR.DATA.ReadData[599]

MVI56E-MCMR ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 103 of 206

Standard Modbus Protocol Errors

Code Description

1 Illegal Function

2 Illegal Data Address

3 Illegal Data Value

4 Failure in Associated Device

5 Acknowledge

6 Busy, Rejected Message

The "Standard Modbus Protocol Errors" are error codes returned by the device itself. This
means that the Slave device understood the command, but replied with an Exception
Response, which indicates that the command could not be executed. These responses
typically do not indicate a problem with port settings or wiring.

The most common values are Error Code 2 and Error Code 3.

Error Code 2 means that the module is trying to read an address in the device that the
Slave does not recognize as a valid address. This is typically caused by the Slave device
skipping some registers. If you have a Slave device that has address 40001 to 40005,
and 40007 to 40010, you cannot issue a read command for addresses 40001 to 40010
(function code 3, MB Address in Device 0, Count 10) because address 40006 is not a
valid address for this Slave.

Instead, try reading just one register, and see if the error code goes away. You can also
try adjusting your MB Address in Device -1, as some devices have a 1 offset.

An Error Code of 3 is common on Modbus Write Commands (Function Codes 5,6,15, or
16). Typically, this is because you are trying to write to a parameter that is configured as
read only in the Slave device, or the range of the data you are writing does not match the
valid range for that device.

Refer to the documentation for your Slave device, or contact ProSoft Technical Support
for more help with these types of error codes.

MVI56E-MCMR ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 104 of 206

Module Communication Error Codes

Code Description

-1 CTS modem control line not set before transmit

-2 Timeout while transmitting message

-10 Receive buffer near limit; too many commands or large data sets requested

-11 Timeout waiting for response after request

253 Incorrect Slave address in response

254 Incorrect function code in response

255 Invalid CRC/LRC value in response

"Module Communication Errors" are generated by the MVI56E-MCMR module, and
indicate communication errors with the Slave device.

Error Code -11 indicates that the module is transmitting a message on the
communications wire. However, it is not receiving a response from the addressed Slave.
This error is typically caused by one or more of the following conditions.

• Parameter mismatch, for example the module is set for 9600 baud, Slave is set for
19,200, parity is set to none, Slave is expecting even, and so on.

• Wiring problem, for example the port jumper on the module is set incorrectly, or + and
- lines on RS485 are switched)

• The Slave device is not set to the correct address, for example the Master is sending
a command to Slave 1 and the Slave device is configured as device 10.

With a -11 error code, check all of the above parameters, wiring, and settings on the
Slave device. Also, make sure that you cycle power to the module, or toggle the
MCMR.CONTROL.WARMBOOT or COLDBOOT bit.

Error codes of 253 to 255 typically indicate noise on RS485 lines. Make sure that you are
using the proper RS485 cable, with termination resistors installed properly on the line. If
termination resistors are installed, try removing them, as they are usually only required on
cable lengths of more than 1000 feet.

Command List Entry Errors

Code Description

-41 Invalid enable code

-42 Internal address > maximum address

-43 Invalid Modbus Slave Device Address (< 0 or > 255)

-44 Count parameter set to 0

-45 Invalid function code

-46 Invalid swap code

The above error codes indicate that the module has detected an error when parsing the
command.

For all commands that have not been configured (all parameters set to a value of 0) you
will receive an error code of -44. To remove this error code, you can change your
MODBUS PORT X REG COUNT parameter to the number of registers to send, and download
the updated configuration to the module.

MVI56E-MCMR ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 105 of 206

Transferring the Command Error List to the Processor

You can transfer the command error list to the processor from the module database. To
place the table in the database, set the Command Error Pointer
(MCMR.PORT1.CMDERRPTR) parameter to the database location desired.

In the sample ladder, the MCMR.PORT1.CMDERRPTR tag is set to a value of 1100. This
will cause the error value of command 0 to be placed at database address 1100. Each
command error value occupies one database word. The error value for command 1 will
be in location 1101 and the remaining values in consecutive database locations.

To transfer this table to the processor, refer to Command Error Codes (page 101). Make
sure that the Command Error table is in the database area covered by the Read Data
(MCMR.MODDEF.READSTARTREG and MCMR.MODDEF.READREGCNT).

3.1.3 MCM Status Data

Status information can also be obtained from the MVI56E-MCMR module by checking the
MCMR.STATUS.PRTXERRS location. Below is a sample.

If your system is working correctly, you will see CMDREQ, CMDRESP, REQUESTS, and
RESPONSES all incrementing together. If you see that CMDERR is incrementing, determine
what command is causing the error (using the error code defined in the previous section
(page 101)) and correct the issue causing the error.

Note: This information is not as detailed as the individual error codes, but they can help to troubleshoot your
application.

Also within the MCMR.STATUS location is the parameters for Last Error and Previous
Error, shown below.

This indicates the command index that last generated an error and does not indicate a
command currently in error. In the above example, a value of 0 in PORT1LASTERR

indicates that the last error was generated by MODBUS PORT 1 COMMAND 0. This does not
indicate that this command is currently in error. The value in
MCMR.STATUS.PORT1PREVIOUSERR indicates that before MASTER COMMAND 0

generated an error, MODBUS PORT 1 COMMAND 1 posted an error.

MVI56E-MCMR ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 106 of 206

3.2 Verify Slave Communications

For verifying the communications to the module as a Slave, you can monitor the STATUS

tags under the PRTXERRS section.

Below is an example.

The REQUESTS field shows the number of request messages sent to the module as a
Slave. The RESPONSES field shows how many times the module has responded to a
request message from the Modbus Master.

MVI56E-MCMR ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 107 of 206

3.2.1 Status Data Definition as a Slave

This section contains a description of the members present in the MCMR.STATUS

object. This data is transferred from the module to the processor as part of each read
block using the module’s Input Image. Sample Ladder Logic will copy this information
from the LOCAL: X: I.DATA {OFFSET} tag into the MCMR.STATUS array.

Offset Content Description

0 Program Scan Count This value is incremented each time a complete program cycle occurs in the
module.

1 to 2 Product Code These two registers contain the product code of "MCM".

3 to 4 Product Version These two registers contain the product version for the current running
software.

5 to 6 Operating System These two registers contain the month and year values for the program
operating system.

7 to 8 Run Number These two registers contain the run number value for the currently running
software.

12 Port 1 Requests This field is the total number of messages sent out of the port.

13 Port 1 Responses This field contains the total number of messages received on the port.

14 Port 1 Errors Sent This field contains the total number of message errors sent out of the port.

15 Port 1 Errors Received This field contains the total number of message errors received on the port.

19 Port 2 Requests This field contains the total number of messages sent out the port.

20 Port 2 Responses This field contains the total number of messages received on the port.

21 Port 2 Errors Sent This field contains the total number of message errors sent out the port.

22 Port 2 Errors Received This field contains the total number of message errors received on the port.

23 Read Block Count This field contains the total number of read blocks transferred from the module
to the processor.

24 Write Block Count This field contains the total number of write blocks transferred from the
module to the processor.

25 Parse Block Count This field contains the total number of blocks successfully parsed that were
received from the processor.

26 Command Event Block
Count

This field contains the total number of command event blocks received from
the processor.

27 Command Block Count This field contains the total number of command blocks received from the
processor.

28 Error Block Count This field contains the total number of block errors recognized by the module.

29 Port 1 Current Error For a Slave port, this field contains the value of the current error code
returned.

30 Port 1 Last Error For a Slave port, this field contains the value of the last error code returned.

31 Port 2 Current Error For a Slave port, this field contains the value of the current error code
returned.

32 Port 2 Last Error For a Slave port, this field contains the value of the last error code returned.

MVI56E-MCMR ♦ ControlLogix® Platform Ladder Logic
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 108 of 206

4 Ladder Logic

Ladder logic is required for application of the MVI56E-MCMR module. Tasks that must be
handled by the ladder logic are module data transfer, special block handling, and status
data receipt. Additionally, a power-up handler may be needed to handle the initialization
of the module’s data and to clear any processor fault conditions.

The sample ladder logic is extensively commented, to provide information on the purpose
and function of each rung. For most applications, the sample ladder will work without
modification.

4.1 MVI56E-MCMR User Defined Data Types

This section describes the controller tags that are defined in the example logic to
interface with the module. The user can extend these tags to meet the specifications
required for their application, If additional data transfer is required.

4.1.1 Module Status Data and Variables (MCMRModuleDef)

All status and variable data related to the MVI56E-MCMR is stored in a user defined data
type. An instance of the data type is required before the module can be used. This is
done by declaring a variable of the data type in the Controller Tags Edit Tags dialog box.

The following table describes the structure of this object.

Name Data Type Description

DATA MCMRDATA (page 109) Read Data and Write Data

STATUS MCMRSTATUS (page 109) Status information in each read block

CONTROL MCMRCONTROL (page 110) Command Control Object

UTIL MCMRUTIL (page 108) Backplane Object

This object contains objects that define variables for the module and status data related
to the module. Each of these object types is discussed in the following topics of the
document.

MVI56E-MCMR ♦ ControlLogix® Platform Ladder Logic
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 109 of 206

Backplane Object (MCMRUTIL)

The MCMRUTIL object stores all the variables required for the data transfer operation
between the module and the controller. The LastRead data member is used as the
handshaking byte to indicate the arrival of new data from the module.

The following table describes the structure of this object.

Name Data Type Description

LastRead INT Index of last read block

LastWrite INT Index of last write block

BlockIndex INT Computed block offset for data table

The other members of the object are utilized in the ladder logic to assist in the data
transfer operation.

Module Data Object (MCMRDATA)

Data for the module is stored in two controller tags for the example ladder logic. The read
data (data transferred from the module to the processor) is stored in the controller tag
MCMR.READDATA[]. The write data (data transferred from the processor to the module)
is stored in the controller tag MCMR.WRITEDATA[]. Separate tags can be constructed for
each data type used by the controlled devices and for each device.

Name Data Type Description

ReadData INT[600] Data read from module

WriteData INT[600] Data to write to module

Status Object (MCMRSTATUS)

This object stores the status data of the module. The MCMRSTATUS object shown below
is updated each time a read block is received by the processor. Use this data to monitor
the state of the module at a "real-time rate".

Name Data Type Description

PassCnt INT Program cycle counter

Product INT[2] Product Name

Rev INT[2] Revision Level Number

OP INT[2] Operating Level Number

Run INT[2] Run Number

Port1Stats MCMRPortStats Port error statistics for Port 1

Port2Stats MCMRPortStats Port error statistics for Port 2

Block MCMRBlockStats Block transfer statistics

Port1CurrentErr INT Current error/index for Port 1

Port1LastErr INT Last error/index for Port 1

Port2CurrentErr INT Current error/index for Port 2

Port2LastErr INT Last error/index for Port 2

StatusMsgData INT[46] This status data is returned when requested by a
Status Message (MSG) and can be used to detect
proper module operation.

StatusTrigger BOOL Triggers Status reading.

MVI56E-MCMR ♦ ControlLogix® Platform Ladder Logic
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 110 of 206

Within the MCMRSTATUS objects are objects containing the status information for each
application port. Refer to MVI56E-MCMR Status Data Definition (page 165) for a
complete listing of the data stored in this object. This data is acquired from the module
using Message instructions (MSGs).

MCMRPortStats

The MCMRPORTSTATS object holds the status data related to a single Modbus port. The
following table describes the structure of this object.

Name Data Type Description

PortTrigger BOOL Triggers port status reading

CmdReq INT Total number of command list requests sent

CmdResp INT Total number of command list responses received

CmdErr INT Total number of command list errors

Requests INT Total number of requests for port

Responses INT Total number of responses for port

ErrSent INT Total number of errors sent

ErrRec INT Total number of errors received

SlaveStats SINT[250] Port Slave status values

This information is passed to the controller from the module with each normal read block
image.

MCMRBlockStats

The MCMRBLOCKSTATS object stores the block transfer statistics for the MVI56E-MCMR
module.

Name Data Type Description

Read INT Total number of read block transfers

Write INT Total number of write block transfers

Parse INT Total number of blocks parsed

Event INT Total number of event blocks received

Cmd INT Total number of command blocks received

Err INT Total number of block transfer errors

MVI56E-MCMR ♦ ControlLogix® Platform Ladder Logic
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 111 of 206

Command Control Data Object (MCMRCONTROL)

Contains the data structure required for the processor to request special tasks from the
module. The command control task allows the processor to dynamically enable
commands configured in the port command list. The event command task allows the
processor to dynamically build any commands to be sent by the module Master port to a
remote Slave.

The following table describes the structure of this object.

Name Data Type Description

ColdBoot BOOL Triggers a Cold Boot Command

WarmBoot BOOL Triggers a Warm Boot Command

CmdControlP1 MCMRCmdControl Command Control for Port 1

CmdControlP2 MCMRCmdControl Command Control for Port 2

EventTriggerP1 BOOL Triggers the Event Command.

EventTriggerP2 BOOL Triggers the Event Command.

EventCmdP1 MCMREventCmd[100] This object contains the attributes to define a Master
command. An array of these objects is used for each port.

EventCmdP2 MCMREventCmd[100] This object contains the attributes to define a Master
command. An array of these objects is used for each port.

EventCmdRespP1 INT[5] Event Command Response for Port 1

EventCmdRespP2 INT[5] Event Command Response for Port 2

MVI56E-MCMR ♦ ControlLogix® Platform Ladder Logic
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 112 of 206

MCMREventCmd

When the command bit (MCMR.CONTROL.EVENTTRIGGERPX) is set in the example
ladder logic, the module will build a block 9901 with the command contained in the first
command of the MCMR.CONTROL.EVENTCMDPX[] array. The module will receive this
block and build and send the command to the specified control device using a MSG
block.

The following table describes the data for the command element in the MCMREVENTCMD

array.

Name Data Type Description

Enable INT 0=Disable, 1=Continuous, 2=Event Command

IntAddress INT Module’s internal address associated with the command

PollInt INT Minimum number of seconds between issuance of command (0 to 65535 sec)

Count INT Number of registers associated with the command

Swap INT Swap code used with command

Device INT Device index in Device Table to associate with the command

Func INT Function code for the command

DevAddress INT Address in device associated with the command

MCMRCmdControl

When the command bit (MCMR.CONTROL.CMDCONTROLPX.CMDTRIGGER) is set in the
example ladder logic, the module will build a block 9901 with the number of commands
set through: MCMR.CONTROL.CMDCONTROLPX.CMDCONTROLDATA[0].

The command indexes will be set through the controller tags starting from
MCMR.CONTROL.CMDCONTROLPX.CMDCONTROLDATA[1] to
MCMR.CONTROL.CMDCONTROLPX.CMDCONTROLDATA[20]

For example, in order to enable commands 0, 2 and 5 the following values would be set:

MCMR.CONTROL.CMDCONTROLPX.CMDCONTROLDATA[0] = 3

MCMR.CONTROL.CMDCONTROLPX.CMDCONTROLDATA[1] = 0

MCMR.CONTROL.CMDCONTROLPX.CMDCONTROLDATA[2] = 2

MCMR.CONTROL.CMDCONTROLPX.CMDCONTROLDATA[3] = 5

The module will receive this block and build and send the command to the specified
control device using a MSG block.

The following table describes the data for the command element in MCMRCMDCONTROL.

Name Data Type Description

CmdTrigger BOOL Command Trigger

CmdControlData INT[21] Command Control Data

CmdControlResp INT[5] Command Control Response

CmdErrTrigger BOOL Command Error Trigger

CmdErrData INT[102] Command Error Data

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 113 of 206

5 Diagnostics and Troubleshooting

The module provides information on diagnostics and troubleshooting in the following
forms:

• LED status indicators on the front of the module provide information on the module’s
status.

• Status data contained in the module can be viewed in ProSoft Configuration Builder
through the Ethernet port.

• Status data values are transferred from the module to the processor.

5.1 Ethernet LED Indicators

The Ethernet LEDs indicate the module's Ethernet port status as follows:

LED State Description

10/100 Off No activity on the Ethernet port.

Green Flash The Ethernet port is actively transmitting or receiving data.

LINK/ACT Off No physical network connection is detected. No Ethernet
communication is possible. Check wiring and cables.

Green Solid Physical network connection detected. This LED must be On solid
for Ethernet communication to be possible.

5.1.1 Scrolling LED Status Indicators

The scrolling LED display indicates the module’s operating status as follows:

Initialization Messages

Code Message

Boot / DDOK Module is initializing

Ladd Module is waiting for required module configuration data from ladder logic to
configure the Modbus ports

Waiting for Processor
Connection

Module did not connect to processor during initialization
Sample ladder logic or AOI is not loaded on processor
Module is located in a different slot than the one configured in the ladder
logic/AOI
Processor is not in RUN or REM RUN mode

Last config: <date> Indicates the last date when the module changed its IP address. You can
update the module date and time through the module’s web page, or with the
MVI56E Optional Add-On Instruction.

Config P1/P2 <Modbus
mode> <Port type>
<Baud> <Parity> <Data
bits> <Stop Bits> <RS
Interface> <ID (Slave)>
<Cmds: (Master)>

After power up and every reconfiguration, the module will display the
configuration of both ports. The information consists of:
Modbus mode: RTU/ASCII
Port type: Master/Slave
Baud: 115200 / 57600 / 38400 / 19200 / 9600/ 4800 / 2400 / 1200 / 600 / 300
Parity: None / Even / Odd
Data bits: 7 / 8
Stop bits: 1 / 2
RS Interface: RS-232 / RS-422 / RS-485
ID: Slave Modbus Address
Cmds: Configured Modbus Master Commands

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 114 of 206

Operation Messages

After the initialization step, the following message pattern will be repeated.

<Backplane Status> <IP Address> <Backplane Status> <Port Status>

Code Message

<Backplane Status> OK: Module is communicating with processor
ERR: Module is unable to communicate with processor. For this
scenario, the <Port Status> message above is replaced with "Processor
faulted or is in program mode".

<IP Address> Module IP address

<Port Status> OK: Port is communicating without error
Master/Slave Communication Errors: port is having communication
errors. Refer to PCB diagnostics (page 113, page 119) for further
information about the error.

5.1.2 Non-Scrolling LED Status Indicators

The non-scrolling LEDs indicate the module’s operating status as follows:

LED Label Color Status Indication

APP Red or
Green

OFF The module is not receiving adequate power or is not securely
plugged into the rack. May also be OFF during configuration
download.

GREEN The MVI56E-MCMR is working normally.

RED The most common cause is that the module has detected a
communication error during operation of an application port.
The following conditions may also cause a RED LED:
The firmware is initializing during startup
The firmware detects an on-board hardware problem during
startup
Failure of application port hardware during startup
The module is shutting down
The module is rebooting due to a ColdBoot or WarmBoot
request from the ladder logic or Debug Menu

OK Red or
Green

OFF The module is not receiving adequate power or is not securely
plugged into the rack.

GREEN The module is operating normally.

RED The module has detected an internal error or is being
initialized. If the LED remains RED for over 10 seconds, the
module is not working. Remove it from the rack and re-insert it
to restart its internal program.

ERR Not used.

5.2 Using the Diagnostics Menu in ProSoft Configuration Builder

Tip: You can have a ProSoft Configuration Builder Diagnostics window open for more than one module at a
time.

To connect to the module’s Configuration/Debug Ethernet port:

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 115 of 206

1 In ProSoft Configuration Builder, select the module, and then click the right mouse
button to open a shortcut menu.

2 On the shortcut menu, choose DIAGNOSTICS.

3 In the Diagnostics window, click the SET UP CONNECTION button to browse for the
module’s IP address.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 116 of 206

4 In the Connection Setup dialog box, click the TEST CONNECTION button to verify that
the module is accessible with the current settings.

You can also use CIPconnect® to connect to the module through a 1756-ENBT card.
Refer to Using CIPconnect to Connect to the Module (page 87) for information on how
to construct a CIP path.

5 If the Test Connection is successful, click CONNECT.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 117 of 206

If PCB is unable to connect to the module:

1 Click the BROWSE DEVICE(S) button to open the ProSoft Discovery Service. Select the
module, then right-click and choose SELECT FOR PCB.

2 Close ProSoft Discovery Service, and click the CONNECT button again.
3 If these troubleshooting steps fail, verify that the Ethernet cable is connected properly

between your computer and the module, either through a hub or switch or directly
between your computer and the module.

If you are still not able to establish a connection, contact ProSoft Technology for
assistance.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 118 of 206

5.2.1 Connect to the Module’s Webpage

The module's internal webserver provides access to module status, diagnostics, and
firmware updates.

1 In ProSoft Discovery Service, select the module to configure, and then click the right
mouse button to open a shortcut menu.

2 On the shortcut menu, choose VIEW MODULE’S WEBPAGE.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 119 of 206

5.2.2 The Diagnostics Menu

The Diagnostics menu for this module is arranged as a tree structure, with the Main Menu
at the top of the tree, and one or more sub-menus for each menu command. The first
menu you see when you connect to the module is the Main menu.

5.2.3 Monitoring Backplane Information

Use the BACKPLANE menu to view the backplane status information for the MVI56E-
MCMR module.

Backplane Configuration

Click Config to view current backplane configuration settings, including

• Read Start

• Read Count

• Write Start

• Write Count

• Error Status Pointer

The settings on this menu correspond with the [BACKPLANE CONFIGURATION] section of
the module configuration file.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 120 of 206

Backplane Status

Use the Status menu to view current backplane status, including

• Number of retries

• Backplane status

• Fail count

• Number of words read

• Number of words written

• Number of words parsed

• Error count

• Event count

• Command count

During normal operation, the read, write, and parsing values should increment
continuously, while the error value should not increment.

The status values on this menu correspond with members of the Status Data Definition.

5.2.4 Monitoring Database Information

Use the DATABASE menu to view the contents of the MVI56E-MCMR module’s internal
database.

You can view data in the following formats:

ASCII

Decimal

Float

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 121 of 206

Hexadecimal

Use the scroll bar on the right edge of the window to view each page (100 words) of data.

5.2.5 Monitoring General Information

Use the General Menu to view module version information.

The values on this menu correspond with the contents of the module’s Miscellaneous
Status registers.

5.2.6 Monitoring Modbus Port Information

Use the Modbus Port 1 and Modbus Port 2 menus to view the information for each of the
MVI56E-MCMR module’s Modbus application ports.

Port Configuration

Use the Port Configuration menu to view configuration settings for Modbus Port 1 and
Modbus Port 2.

Master Command List

Use the Master Command List menu to view the command list settings for Modbus Port 1
and Modbus Port 2.

Use the scroll bar on the right edge of the window to view each Modbus Master
command.

Note: The Master Command List is available only if the port is configured as a Modbus Master.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 122 of 206

Master Command Status

Use the Master Command Status menu to view Master command status for Modbus Port
1 and Modbus Port 2.

A zero indicates no error.

A non-zero value indicates an error. Refer to Error Codes (page 101) for an explanation
of each value.

Slave Status List

Use the Slave Status List menu to view the status of each Slave connected to the
Modbus Master port.

Slaves attached to the Master Port can have one of the following states:

State Description

0 The Slave is inactive and not defined in the command list for the Master Port.

1 The Slave is actively being polled or controlled by the Master Port. This does not
indicate that the Slave has responded to this message.

2 The Master Port has failed to communicate with the Slave device. Communications
with the Slave is suspended for a user defined period based on the scanning of the
command list.

3 Communications with the Slave has been disabled by the ladder logic. No
communication will occur with the Slave until this state is cleared by the ladder logic.

Refer to Slave Status Blocks (page 165) for more information.

Port Status

Use the Port Status menu to view status for Modbus Port 1 and Modbus Port 2. During
normal operation, the number of requests and responses should increment, while the
number of errors should not change.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 123 of 206

5.2.7 Data Analyzer

The Data Analyzer mode allows you to view all bytes of data transferred on each port.
Both the transmitted and received data bytes are displayed. Use of this feature is limited
without a thorough understanding of the protocol.

Configuring the Data Analyzer

Select Timing Interval

Time Ticks help you visualize how much data is transmitted on the port for a specified
interval. Select the interval to display, or choose No Ticks to turn off timing marks.

Select the Communication Port to Analyze

You can view incoming and outgoing data for one application port at a time. Choose the
application port to analyze.

Select the Data Format

You can view incoming and outgoing data in Hexadecimal (HEX) or Alphanumeric
(ASCII) format.

Starting the Data Analyzer

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 124 of 206

The following illustration shows an example of the Data Analyzer output.

The Data Analyzer can display the following special characters.

Character Definition

[] Data enclosed in these characters represent data received on the port.

< > Data enclosed in these characters represent data transmitted on the port.

<R+> These characters are inserted when the RTS line is driven high on the port.

<R-> These characters are inserted when the RTS line is dropped low on the port.

<CS> These characters are displayed when the CTS line is recognized high.

TT These characters are displayed when the "Time Tick" is set to any value other than
"No Ticks".

Stopping the Data Analyzer

Important: When in analyzer mode, program execution will slow down. Only use this tool during a
troubleshooting session. Before disconnecting from the Config/Debug port, please stop the data analyzer.
This action will allow the module to resume its normal high speed operating mode.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 125 of 206

Data Analyzer Tips

For most applications, HEX is the best format to view the data, and this does include
ASCII based messages (because some characters will not display in the Diagnostics
window, and by capturing the data in HEX, we can figure out what the corresponding
ASCII characters are supposed to be).

The Tick value is a timing mark. The module will print a _TT for every xx milliseconds of
no data on the line. Usually 10milliseconds is the best value to start with.

To save a capture file of your Diagnostics session

1 After you have selected the Port, Format, and Tick, we are now ready to start a
capture of this data.

2 When you have captured the data you want to save, click again to stop capturing
data.

You have now captured, and saved the file to your PC. This file can now be used in
analyzing the communications traffic on the line, and assist in determining communication
errors. The log file name is PCB-Log.txt, located in the root directory of your hard drive
(normally Drive C).

Now you have everything that shows up on the Diagnostics screen being logged to a file
called PCB-Log.txt. You can email this file to ProSoft Technical Support for help with
issues on the communications network.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 126 of 206

To begin the display of the communications data, start the Data Analyzer. When the Data
Analyzer is running, you should see something like this.

The <R+> means that the module is transitioning the communications line to a transmit
state.

All characters shown in <> brackets are characters being sent out by the module.

The <R-> shows when the module is done transmitting data, and is now ready to receive
information back.

And finally, all characters shown in the [] brackets is information being received from
another device by the module.

After taking a minute or two of traffic capture, stop the Data Analyzer.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 127 of 206

5.3 Reading Status Data from the Module

The MVI56E-MCMR module returns a 33-word Status Data block that can be used to
determine the module’s operating status. This data is transferred to the ControlLogix
processor with an MSG instruction. For a complete listing of the status data object, refer
to MVI56E-MCMR Status Data Definition (page 165).

5.3.1 Required Hardware

You can view configuration information, perform maintenance, and send (upload) or
receive (download) configuration files through the module’s Ethernet port.

ProSoft Technology recommends the following minimum hardware to connect your
computer to the module:

• 80486 based processor (Pentium preferred)

• 1 megabyte of memory

• Use the included Ethernet cable to connect the module to an Ethernet hub or a
10/100 Base-T Ethernet switch, or directly to the Ethernet port on your PC.

5.3.2 Viewing the Error Status Table

Command execution status and error codes for each individual command are stored in a
Master Command Status/Error List, held in the module’s internal memory. There are
several ways to view this data.

• View Command Status, Slave Status and Port Status in the Diagnostics dialog box in
ProSoft Configuration Builder (page 121).

• Configure the Command Error Pointer parameter (<CmdErrPtr>) to copy the
status/error values into the User Database area of module memory.

• Copy this table to a section of the ReadData area, where you can view it in the
<READDATAARRAY> tag array in the ControlLogix controller tag database. You can
use these values for communications status monitoring and alarming.

o COMMAND ERROR POINTER = "MCMR.CONFIG.PORTX.CMDERRPTR"
o <READDATAARRAY> = "MCMR.DATA.READDATA[X]"

These variables would hold the literal tag names in the sample program or Add-On
Instruction. Use these variables to accommodate future ladder or tag changes while
maintaining backward compatibility.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 128 of 206

5.4 Communication Error Codes

During module configuration download, the OK and APP LEDs will cycle through various
states. If the OK LED remains RED and the APP LED remains OFF or RED for a long
period of time, look at the configuration error words in the configuration request block.
The structure of the block is shown in the following table.

Offset Description Length

0 Reserved 1

1 9000 1

2 Module Configuration Errors 1

3 Port 1 Configuration Errors 1

4 Port 2 Configuration Errors 1

5 to 38 Spare 34

39 -2 or -3 1

The bits in each configuration word are shown in the following table. The module
configuration error word has the following definition:

Bit Description Value

0 Read block start value is greater than the database size. 0x0001

1 Read block start value is less than zero. 0x0002

2 Read block count value is less than zero. 0x0004

3 Read block count + start is greater than the database size. 0x0008

4 Write block start value is greater than the database size. 0x0010

5 Write block start value is less than zero. 0x0020

6 Write block count value is less than zero. 0x0040

7 Write block count + start is greater than the database size. 0x0080

8 0x0100

9 0x0200

10 0x0400

11 0x0800

12 0x1000

13 0x2000

14 0x4000

15 0x8000

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 129 of 206

The port configuration error words have the following definitions:

Bit Description Value

0 Type code is not valid. Enter a value from 0 (Master) to 1 (Slave). 0x0001

1 The float flag parameter is not valid. 0x0002

2 The float start parameter is not valid. 0x0004

3 The float offset parameter is not valid. 0x0008

4 Protocol parameter is not valid. 0x0010

5 Baud rate parameter is not valid. 0x0020

6 Parity parameter is not valid. 0x0040

7 Data bits parameter is not valid. 0x0080

8 Stop bits parameter is not valid. 0x0100

9 Slave ID is not valid. 0x0200

10 Input bit or word, output word and/or holding register offset(s) are not valid. 0x0400

11 Command count parameter is not valid. 0x0800

12 Spare 0x1000

13 Spare 0x2000

14 Spare 0x4000

15 Spare 0x8000

Correct any invalid data in the configuration for proper module operation. When the
configuration contains a valid parameter set, all the bits in the configuration words will be
clear. This does not indicate that the configuration is valid for the user application. Make
sure each parameter is set correctly for the specific application.

Note: If the APP, BP ACT and OK LEDs blink at a rate of every one-second, this indicates a serious problem
with the module. Call ProSoft Technology Support to arrange for repairs.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 130 of 206

5.4.1 Clearing a Fault Condition

Typically, if the OK LED on the front of the module turns RED for more than ten seconds,
a hardware problem has been detected in the module or the program has exited.

To clear the condition, follow these steps:

1 Turn off power to the rack.
2 Remove the card from the rack.
3 Verify that all jumpers are set correctly.
4 If the module requires a Compact Flash card, verify that the card is installed correctly.
5 Re-insert the card in the rack and turn the power back on.
6 Verify correct configuration data is being transferred to the module from the

ControlLogix controller.

If the module's OK LED does not turn GREEN, verify that the module is inserted
completely into the rack. If this does not cure the problem, contact ProSoft Technology
Technical Support.

MVI56E-MCMR ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 131 of 206

5.4.2 Troubleshooting

Use the following troubleshooting steps if you encounter problems when the module is
powered up. If these steps do not resolve your problem, please contact ProSoft
Technology Technical Support.

Processor Errors

Problem description Steps to take

Processor fault Verify that the module is plugged into the slot that has been configured
for the module in the I/O Configuration of RSLogix.
Verify that the slot location in the rack has been configured correctly in
the ladder logic.

Processor I/O LED
flashes

This indicates a problem with backplane communications. A problem
could exist between the processor and any installed I/O module, not just
the MVI56E-MCMR. Verify that all modules in the rack are correctly
configured in the ladder logic.

Module Errors

Problem description Steps to take

BP ACT LED (not
present on MVI56E
modules) remains OFF
or blinks slowly
MVI56E modules with
scrolling LED display:
<Backplane Status>
condition reads ERR

This indicates that backplane transfer operations are failing. Connect to
the module’s Configuration/Debug port to check this.

• To establish backplane communications, verify the following items:

• The processor is in RUN or REM RUN mode.

• The backplane driver is loaded in the module.

• The module is configured for read and write data block transfer.

• The ladder logic handles all read and write block situations.

• The module is properly configured in the processor I/O configuration
and ladder logic.

OK LED remains RED The program has halted or a critical error has occurred. Connect to the
Configuration/Debug port to see if the module is running. If the program
has halted, turn off power to the rack, remove the card from the rack and
re-insert it, and then restore power to the rack.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 132 of 206

6 Reference

6.1 About the Modbus Protocol

Modbus is a widely-used protocol originally developed by Modicon in 1978. Since that
time, the protocol has been adopted as a standard throughout the automation industry.

Modbus is a Master/Slave protocol. The Master establishes a connection to the remote
Slave. When the connection is established, the Master sends the Modbus commands to
the Slave. The MVI56E-MCMR module can work as a Master and as a Slave.

The MVI56E-MCMR module also works as an input/output module between itself and the
Rockwell Automation backplane and processor. The module uses an internal database to
pass data and commands between the processor and Master and Slave devices on
Modbus networks.

6.2 Specifications

The MVI56E Modbus Master/Slave Communication Module with Reduced Data Block
allows users to integrate Modbus devices and networks into the Rockwell Automation®
ControlLogix® architecture.

Compatible devices include not only Modicon® PLCs (almost all support the Modbus
protocol) but also a wide assortment of processors, HMI displays, SCADA systems and
field devices made by a variety of manufacturers. The module acts as an input/output
module between the Modbus network and the ControlLogix processor. The data transfers
between the module and the processor are asynchronous from communications on the
Modbus network. A 5000-word register space in the module hold the data to be
exchanged between the processor and the Modbus network.

6.2.1 General Specifications

• Backward-compatible with previous MVI56-MCMR versions

• Single-Slot, 1756 ControlLogix® backplane compatible

• 10/100 Mbps Ethernet port with Auto Cable Crossover Detection

• User-definable module data memory mapping of up to 5000, 16-bit registers

• CIPconnect®-enabled network configuration and diagnostics monitoring using
ControlLogix 1756-ENxT modules and EtherNet/IP® pass-thru communications

• Reduced I/O image size designed specifically to optimize remote rack
implementations

• Sample Ladder Logic and Add-On Instruction (AOI) used for data transfers between
module and processor

• 4-character, scrolling LED display of status and diagnostic data in plain English

• Personality Module (non-volatile CF card) to store network configuration allowing
quick in-the-field product replacement by transferring the CF card

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 133 of 206

6.2.2 Hardware Specifications

Specification Description

Backplane Current Load 800 mA @ 5 VDC
3 mA @ 24 VDC

Operating Temperature 0°C to 60°C (32°F to 140°F)

Storage Temperature -40°C to 85°C (-40°F to 185°F)

Shock 30 g operational
50 g non-operational
Vibration: 5 g from 10 to 150 Hz

Relative Humidity 5% to 95% (without condensation)

LED Indicators Application Status (APP)
Module Status (OK)

4-Character, Scrolling, Alpha-
Numeric LED Display

Shows Module, Version, IP, Port Status, P1 and P2 Settings,
and Error Information

Debug/Configuration Ethernet port (E1 - Config)

Ethernet Port 10/100 Base-T, RJ45 Connector, for CAT5 cable
Link and Activity LED indicators
Auto-crossover cable detection

Serial Application ports (P1 & P2)

Software configurable
communication parameters

Baud rate: 110 baud to 115.2 kbps
RS-232, RS-485, and RS-422
Parity: none, odd or even
Data bits: 5, 6, 7, or 8
Stop bits: 1 or 2
RTS on/off delay: 0 to 65535 milliseconds
Full hardware handshaking control (optional)
Radio and modem support

App Ports (P1, P2) RJ45 (DB-9M with supplied adapter cable)
Configurable RS-232 hardware handshaking
500V Optical isolation from backplane
RS-232, RS-422, RS-485 jumper-select, per port
RX (Receive) and TX (Transmit) LEDs, each port

Shipped with Unit RJ45 to DB-9M cables for each serial port

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 134 of 206

6.2.3 General Specifications - Modbus Master/Slave

Specification Description

Communication
parameters

Baud Rate: 110 to 115K baud
Stop Bits: 1 or 2
Data Size: 7 or 8 bits
Parity: None, Even, Odd
RTS Timing delays: 0 to 65535 milliseconds

Modbus Modes RTU mode (binary) with CRC-16
ASCII mode with LRC error checking

Floating Point Data Floating point data movement supported, including configurable
support for Enron, Daniel®, and other implementations

Modbus Function Codes
Supported

1: Read Coil Status
2: Read Input Status
3: Read Holding Registers
4: Read Input Registers
5: Force (Write) Single Coil
6: Preset (Write) Single
 Holding Register
8: Diagnostics (Slave Only,
 Responds to
 Subfunction 00)

15: Force(Write) Multiple Coils
16: Preset (Write) Multiple
 Holding Registers
17: Report Slave ID (Slave Only)
22: Mask Write Holding
 Register (Slave Only)
23: Read/Write Holding
 Registers (Slave Only)

6.2.4 Functional Specifications

Modbus Master

A port configured as a virtual Modbus Master actively issues Modbus commands to other
nodes on the Modbus network, supporting up to 100 commands on each port. The
Master ports have an optimized polling characteristic that polls slaves with
communication problems less frequently.

Specification Description

Command List Up to 100 command per Master port, each fully configurable for
function, slave address, register to/from addressing and word/bit
count.

Polling of command list Configurable polling of command list, including continuous and on
change of data, and dynamically user or automatic enabled.

Status Data Error codes available on an individual command basis. In addition,
a slave status list is maintained per active Modbus Master port.

Modbus Slave

A port configured as a Modbus slave permits a remote Master to interact with all data
contained in the module. This data can be derived from other Modbus slave devices on
the network, through a Master port, or from the ControlLogix processor.

Specification Description

Node address 1 to 247 (software selectable)

Status Data Error codes, counters and port status available per configured slave
port

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 135 of 206

6.3 Functional Overview

6.3.1 Processor/Module Data Transfers

The MVI56E-MCMR module communicates directly over the ControlLogix backplane or
across any supported 1756 network bridge (the most common being 1756-CNBx Control
Net Bridge and 1756-ENxT EtherNet/IP Bridge). Data travels between the module and
the ControlLogix processor across the backplane or network using the module's Input and
Output Images and MSG instructions.

The data update frequency is determined by the Requested Packet Interval (RPI) defined
in the module's I/O configuration and the communication load and speed on the Modbus,
ControlNet, or EtherNet/IP networks. When the module is installed in the ControlLogix
chassis, typical backplane update rates range from 1 to 10 milliseconds. Execution time
for MSG instruction data transfers are dependant on the amount of unscheduled time
available on the backplane or network and how frequently the MSG instruction is
executed.

Data received by the Modbus driver is placed in the module's internal memory in an area
designated to receive it. The data in this area is then transferred to the processor in the
I/O Input Image. This data is processed by ladder logic to fill the
MCMR.DATA.READDATA array controller tags. The Input Image size is 42 words per
image block, 40 of which are user data, along with two control words. Larger amounts of
user data can be moved from the module to the processor by using multiple sequential
block transfers. The module will automatically sequence multiple 40-word blocks until the
total amount of user data has been moved. The module calculates the required number
of read data blocks by dividing the READ REGISTER COUNT parameter in the configuration
file by 40 and rounding up to the next higher whole integer value.

The processor inserts data in the module's Output Image to transfer to the module. The
module's program extracts the data and stores it in the internal module database, so that
it may be transmitted by the Master driver to Slaves on serial network. Additionally, the
ControlLogix processor can send special function blocks to the module to instruct it to
perform special tasks. The Output Image size is 42 words per image block, 40 of which
are user data, along with one control word. Larger amounts of user data can be moved
from the processor to the module by using multiple sequential block transfers. The
module will automatically sequence multiple 40-word blocks until the total amount of user
data has been moved. The module calculates the required number of write data blocks by
dividing the Write Register Count parameter in the configuration file by 40 and rounding
up to the next higher whole integer value.

Special function blocks are also passed between the module and the processor using
MSG instructions initiated under ladder logic control. These blocks are transferred
between the processor and the module only when triggered by user-programmed logic.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 136 of 206

The following illustration shows the data transfer method used to move data between the
ControlLogix processor, the MVI56E-MCMR module, and the serial network. This applies
only for the scheduled I/O data.

As shown in the diagram, all data transferred between the module and the processor over
the backplane is through the Input and Output Images. Ladder logic must be written in the
ControlLogix processor to interface the Input and Output Image data defined in the
controller tags. The user is responsible for handling and interpreting all data received on
the application ports and transferred to the Input Image.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 137 of 206

Using Data Blocks

Each block transferred between the module and the processor contains block
identification codes that define the content or function of the block of data transferred.

Blocks -1 and 0 contain no data when transferred from the processor to the module.
Blocks 1 to 125 transfer data stored or to be stored in the module’s database 40-words of
data per block. These data blocks send data from module to the processor (monitored
data received from the devices on the serial network) and to send data from the
processor to the module (control data to send to the end devices). Block identification
codes 9901 to 9999 are used for special function blocks to control the module.

The following table describes the block identification codes used by the module.

 Available When Port:

Type Block #
Range

Block Descriptions Is Master? Is Slave?

I/O -1 and 0 Null (Used when Read or Write Register
Count = 0)

Yes Yes

I/O 1 to 125 Read or Write Data Blocks Yes Yes

I/O 1000 to 1125 Initialize Output Data Blocks Yes Yes

MSG 9250 Module Error/Status Data Block Yes Yes

MSG 9901 Event Command Block for Port 1 Yes No

MSG 9911 Event Command Block for Port 2 Yes No

MSG 9902 Command Control Block for Port 1 Yes No

MSG 9912 Command Control Block for Port 2 Yes No

MSG 9950 Get Command Error List for Port 1 Block Yes No

MSG 9951 Get Command Error List for Port 2 Block Yes No

MSG 9960 Get Slave Enable/Disable Data for Port 1
Block

Yes No

MSG 9961 Get Slave Enable/Disable Data for Port 2
Block

Yes No

I/O 9998 Warm Boot Request Block Yes Yes

I/O 9999 Cold Boot Request Block Yes Yes

Data is transferred between the module and the ControlLogix processor using the Input
and Output Images (Type=I/O), and some is transferred using MSG blocks (Type=MSG).
Data transferred using the Input and Output Images is used for high-speed, deterministic
delivery time data, controlled by the Requested Packet Interval (RPI) assigned to the
module in the I/O configuration in RSLogix 5000. The MSG data is used for lower priority
data and is transferred using MSG instructions under ladder logic control. MSG data is
handled when there is time available in the unscheduled bandwidth of the network.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 138 of 206

6.3.2 Normal Data Transfer Blocks

Normal data transfer includes the transferring of data received by, or to be transmitted to,
the Modbus drivers and the status data. This data is transferred through read (Input
Image) and write (Output Image) blocks. Refer to Module Data (page 108) for a
description of the data objects used with the blocks and the ladder logic required. The
following topics discuss the structure and function of each block.

Read Block

Read Blocks transfer data from the module to the ControlLogix processor's
MCMR.DATA.READDATA controller tag array. The following table describes the structure
of the input image.

Read Block from Module to Processor

Word Offset Description Length

0 Write Block ID (1 to 125) 1

1 to 40 Read Data 40

41 Read Block ID (1 to 125) 1

The Read Block Identification Code (word 41) is used to signal to the ControlLogix
processor that a new block is ready for processing. It also tells the processor where in the
MCMR.DATA.READDATA controller tag array to place the data contained in the block.

If the value of the code is set to 1, the block contains the 40 words of data from the
module database starting at the address specified in the configuration file parameter,
READ START REGISTER. This data will be put into the ReadData array, starting at
READDATA[0] up to READDATA[39].

Read Block ID 2 would contain the next consecutive 40 words from the module database
to be placed in READDATA[40] up to READDATA[79] and so on, up to the total amount of
data words specified in the configuration parameter, READ REGISTER COUNT.

The block also contains the Write Block Identification Code the module expects to receive
from the processor. Under normal data transfer conditions, the ladder logic should use
the Write Block Identification Code to build the appropriate Output Image data block,
unless a special function block is required. The special function blocks will be discussed
in the next section.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 139 of 206

Write Block

Write Blocks transfer data from the ControlLogix processor's MCMR.DATA.WRITEDATA
controller tag array to the module. The following table describes the structure of the
Output Image used to transfer this data.

Write Block from Processor to Module

Word Offset Description Length

0 Write Block ID (1 to 125) 1

1 to 40 Write Data 40

41 Spare 1

The Write Block Identification Code specifies the index to the 40 words that are currently
being transferred from the MCMR.DATA.WRITEDATA array to the module. If the code is
set to -1 or 0, the Write Block contains no valid data, as would be the case if the
configuration parameter, WRITE REGISTER COUNT, was set to 0, indicating the user did not
have any data to move from the processor to the module.

If the word contains a value from 1 to 125, the data contained in the block will be placed
in the appropriate position of the module’s database. Data from
MCMR.DATA.WriteData[0] through [39] will be transferred using Write Block ID1 and will
be placed in the module's user database area beginning at the address specified in the
configuration file parameter, WRITE START REGISTER. Write Block ID2 will contain data
from MCMR.DATA.WriteData[40} through [79] and will be placed in the next consecutive
40-word block of the module's user database. Data will continue being transferred in 40-
word blocks for the total amount of data words specified in the parameter, WRITE

REGISTER COUNT.

Under normal data transfer conditions, the value used for the Write Block Identification
Code should be the same as that received in Read Block (Input Image) Word 0, unless
some special function block is required. The special function blocks will be discussed in
the next section.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 140 of 206

6.3.3 Special Function Blocks

Write Block Identification Codes greater than 125 cause the module to perform special
functions. Some of these blocks are high-priority and are moved between the processor
and the module through the Input and Output Images. Others are of low-priority and are
moved using Message (MSG) instructions. Each Special Function Write Block Code has
a corresponding Special Function Read Block Code, which will be returned to the
processor in the next Input Image, to confirm the module received and processed the
Special Function Write request. The Special Function Block Codes recognized and used
by the module are defined in the following topics.

Module Status Block (9250)

The General Module Status block contains some basic information about the module
itself and diagnostic counters to help monitor activity on each port and across the
ControlLogix backplane. The block can be requested as needed and is available
regardless of whether the module's ports are configured as Masters or Slaves. Use block
identification code 9250 to request this General Module Status block.

This block of data is requested using the "Get Attribute Single" service type MSG
instruction.

The following table describes the format of the 33-word data block returned to the
processor by this MSG instruction.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 141 of 206

Block Response from Module to Processor

Word Offset Content Description

0 Program Scan Count This value is incremented each time a complete program
cycle occurs in the module.

1 to 2 Product Code The four bytes of these two words contain the ASCII code
values of the 4-letter product code.

3 to 4 Product Version These two registers contain the product version of the current
running module firmware.

5 to 6 Operating System These two registers contain the month and year values for the
program operating system.

7 to 8 Run Number These two registers contain the run number value for the
currently running software.

9 Port 1 Command List
Requests

When Port 1 is a Master, this field contains the number of
requests made from Port 1 to Slave devices on the network.

10 Port 1 Command List
Response

When Port 1 is a Master, this field contains the number of
Slave response messages received on the port.

11 Port 1 Command List Errors When Port 1 is a Master, this field contains the number of
command errors processed on the port. These errors could be
due to a bad response or bad command.

12 Port 1 Requests This field contains the total number of messages sent from the
port when it is a Master and the total number or messages
received when it is a Slave.

13 Port 1 Responses This field contains the total number of messages sent from the
port when it is a Slave and the total number or messages
received when it is a Master.

14 Port 1 Errors Sent When Port 1 is a Slave, this field contains the total number of
message errors sent out of the port. The Slave will send error
messages when a command received is invalid.

15 Port 1 Errors Received When Port 1 is a Master, this field contains the total number of
message errors received on the port from Slaves on the
network. Slaves send error responses when they think they
have received an invalid command or a command with invalid
parameters.

16 Port 2 Command List
Requests

When Port 2 is a Master, this field contains the number of
requests made from Port 2 to Slave devices on the network.

17 Port 2 Command List
Response

When Port 2 is a Master, this field contains the number of
Slave response messages received on the port.

18 Port 2 Command List Errors When Port 2 is a Master, this field contains the number of
command errors processed on the port. These errors could be
due to a bad response or bad command.

19 Port 2 Requests This field contains the total number of messages sent from the
port when it is a Master and the total number or messages
received when it is a Slave.

20 Port 2 Responses This field contains the total number of messages sent from the
port when it is a Slave and the total number or messages
received when it is a Master.

21 Port 2 Errors Sent When Port 2 is a Slave, this field contains the total number of
message errors sent out of the port. The Slave will send error
messages when a command received is invalid.

22 Port 2 Errors Received When Port 2 is a Master, this field contains the total number of
message errors received on the port from Slaves on the
network. Slaves send error responses when they think they
have received an invalid command or a command with invalid
parameters.

23 Read Block Count This field contains the total number of Input Image blocks
transferred across the backplane from the module to the
processor.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 142 of 206

Word Offset Content Description

24 Write Block Count This field contains the total number of Output Image blocks
transferred across the backplane from the processor to the
module.

25 Parse Block Count This field contains the total number of Output Image blocks
received from the processor that were considered valid by the
module firmware (successfully parsed or understood). If
backplane communications are normal, this value will be
equal or nearly equal to the Write Block Count value. If this
counter does not increment along with the Write Block Count
counter, you have a serious backplane communication
problem between the processor and the module. Check the
module configuration in the I/O Configuration section of your
process logic for possible additional error information.

26 Event Command Block
Count

This field contains the total number of Event Command blocks
received from the processor.

27 Command Control Block
Count

This field contains the total number of Command Control
blocks received from the processor.

28 Backplane Communication
Error Block Count

This field contains the total number of block errors recognized
by the module. If this counter is incrementing, you have a
serious backplane communication problem between the
processor and the module. Check the module configuration in
the I/O Configuration section of your process logic for possible
additional error information.

29 Port 1 Current Error For a Slave port, this field contains the value of the current
error code returned to a remote Master. For a Master port, this
field contains the Command List index of the currently
executing command that is receiving an error from a Slave.

30 Port 1 Last Error For a Slave port, this field contains the value of the most
recent previous error code returned to a remote Master. For a
Master port, this field contains the Command List index of the
command which received the most recent previous error from
a Slave.

31 Port 2 Current Error For a Slave port, this field contains the value of the current
error code returned to a remote Master. For a Master port, this
field contains the Command List index of the currently
executing command that is receiving an error from a Slave.

32 Port 2 Last Error For a Slave port, this field contains the value of the most
recent previous error code returned to a remote Master. For a
Master port, this field contains the Command List index of the
command which received the most recent previous error from
a Slave.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 143 of 206

Event Command Blocks (9901, 9911)

The Event Command special function is applicable only when the module's port is
configured as a Modbus Master. Event Commands are best used to send commands
based on special process conditions, such as emergency shutdowns or device-specific
resets. Whenever an Event Command data block is received by the module, it will insert
the requested command into the beginning of the Command Queue, so that the special
command is sent before the next regular polling command.

Sending a message (MSG instruction) containing Event Command Block Identification
Code 9901 for Port 1 or 9911 for Port 2 will cause the module to issue one user-
constructed command. All the data required for one Modbus command must be included
in the MSG instruction using the Event Command Block ID Code.

If you use the provided sample ladder logic or Add-On Instruction (AOI), the Modbus
Command parameter data required for this special function block will be placed in the
controller tag array, MCMR.CONTROL.EVENTCMDP1[0]. for Port 1 or
MCMR.CONTROL.EVENTCMDP2[0] for Port 2. Once the command parameters have
been properly loaded into this array element, the Event Command special function can be
executed by setting a value of one (1) into the controller tag,
MCMR.CONTROL.EVENTTRIGGERP1 for Port 1 or MCMR.CONTROL.EVENTTRIGGERP2
for Port 2.

You will notice that MCMR.CONTROL.EVENTCMDP1[X] and

MCMR.CONTROL.EVENTCMDP2[X] are actually 100-element arrays, capable of holding
up to 100 pre-configured command parameter sets. However, at this time, only the first
element of each array, MCMR.CONTROL.EVENTCMDP1[0] or
MCMR.CONTROL.EVENTCMDP2[0] is used in the MSG instructions of the sample ladder
logic or AOI. If you wish to use the other 99 elements of this array to hold potential Event
Commands that you might want to execute, you will need to create additional logic to use
them. You could:

1 Create logic to COPY the parameter data from any array element, 1-99, into element
0 before triggering the Event Command MSG instruction.

2 Create logic that duplicates the sample MSG instruction, modify it for a specific array
element, create a unique trigger tag for this logic, and use these to send the specific
pre-configured Event Command contained in that array element.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 144 of 206

The following table lists the parameters required for a user-constructed Event Command
and shows the order in which the parameters will be passed by the MSG instruction. You
will notice, these are the same parameters and are in the same order as in any normal
polling command you create in the configuration file for the Master port.

Block Request from Processor to Module

Word Offset Definitions

0 Enable (must be set to 1)

1 Internal DB Address (0-4999)

2 Poll Interval (set to 0)

3 Count (1-125, or maximum supported by the target Slave device)

4 Swap (0, 1, 2, or 3)

5 Device (Modbus Slave Device Address Number of target Slave)

6 Function (Modbus Function Code: 1, 2, 3, 4, 5, 6, 15, or 16)

7 Device Address (0-9999, address offset in target Slave database)

8 Reserved (set to 0)

9 Reserved (set to 0)

Refer to Master Command Configuration (page 50) for a detailed definition of the fields
contained in this block. They are the same as those used in constructing the commands
in ProSoft Configuration Builder (PCB) in the MODBUS PORT 1 COMMANDS or MODBUS

PORT 2 COMMANDS lists.

The Send Event Command message uses the following parameters in the MSG
configuration:

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 145 of 206

Status Data will be returned to the processor by using a "Get Attribute Single" service
type MSG instruction. If you follow the provided sample ladder logic or use the provided
Add-On Instruction (AOI), the Get Event Command Status MSG will be triggered at the
same time as the Send Event Command message by the same controller tag,
MCMR.CONTROL.EVENTTRIGGERP1 for Port 1 or MCMR.CONTROL.EVENTTRIGGERP2
for Port 2. The Get Event Command Status message uses the following parameters in
the MSG configuration:

A 5-word response will be passed back through the MSG instruction to the controller tag
array, MCMR.CONTROL.EVENTCMDRESPP1. or MCMR.CONTROL.EVENTCMDRESPP2,
depending on whether the Event Command was sent for Port 1 (9901) or Port 2 (9911).

The following table lists the 5-word response data received:

Block Response from Module to Processor

Word Offset Definitions

0 9901 or 9911 Event Command ID number

1 0 = Fail-command not added to the command queue,
1 = Success-command added to the command queue.

2 Reserved for future use (will always be zero)

3 Reserved for future use (will always be zero)

4 Reserved for future use (will always be zero)

Please note that the status returned in Word 1 indicates only that the command received
from the Send Event Command MSG was considered a valid command and was
successfully added to the top of the Command Queue as the next command to be sent. A
"Success" result in this data block does not indicate:

• Whether the command was successfully sent on the Modbus Network

• Whether the Slave received or responded to the command

• Whether the Slave's response (in any) was valid

There are many potential reasons why a command might fail after having been
successfully added to the Command Queue. For more details, see Standard Modbus
Protocol Errors or Module Communication Error Codes.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 146 of 206

Command Control Blocks (9902 or 9912)

The Command Control special function is applicable only when the module's port is
configured as a Modbus Master. Command Control is best used to send commands
based on special process conditions, such as emergency shutdowns, device-specific
resets or any conditions which might require priority polling of a specific Slave Device.
Whenever a Command Control data block is received by the module, it will insert the
requested command or commands into the beginning of the Command Queue, so that
the special command or commands will be sent before the next regular polling command.

Sending a message (MSG instruction) containing Command Control Block Identification
Code 9902 for Port 1 or 9912 for Port 2 will cause a list of from one (1) to twenty (20)
commands to be placed in the Command Queue using commands from the user-created
PCB Command Lists. These lists are the ones created in the MODBUS PORT 1 COMMANDS
or MODBUS PORT 2 COMMANDS sections of the PCB configuration file that was
downloaded to the module and that are used by the module for normal, automatic,
repetitive polling.

Any command in the Command List may be given execution priority using a Command
Control special function block MSG, regardless of the value set in the ENABLE parameter
for that command. However, commands placed in the Command List intended for
exclusive use with Command Control will most often have their ENABLE parameter set to
zero(0) and will not be executed as part of a regular polling routine. Commands enabled
using Command Control will be added to the Command Queue for a one-time execution
each time the MSG instruction is activated.

Command Control will not enable commands for normal, repeated polling if they are not
already enabled in the Command List. But Command Control may be used to force
commands that are enabled for normal polling to the top of the Command Queue so that
they will be executed out of their normal polling sequence, as well as being executed in
the normal polling order.

If you use the provided sample ladder logic or Add-On Instruction (AOI), the Modbus
Command parameter data required for this special function block will be placed in the
controller tag array, MCMR.CONTROL.CMDCONTROLP1.CMDCONTROLDATA for Port 1 or
MCMR.CONTROL.CMDCONTROLP2.CMDCONTROLDATA for Port 2. You will notice that
these are 21-element arrays.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 147 of 206

The structure of the Command Control special function data block and the elements in
the associated arrays is shown in the following table.

Block Request from Processor to Module

Word Offset or
Controller Tag Array
Element

Data Field(s) Description

0 Command Count This field contains the number of commands to add to the
Command Queue. Valid values for this field are 1 to 20.

1 to 20 Command Index or
Indexes of the
Command or
Commands to be
added to the
Command Queue

These 20 words of data contain the index numbers to
commands in the Command List that need to be added to the
Command Queue. The commands in the list will be placed in
the command queue for immediate processing by the
module. The command indexes may be listed in any order
and the same command index may be repeated in the list.
Valid values for these 20 fields are 0 to 99.

Once the command count and index or indexes have been properly loaded into this array,
the Command Control special function can be executed by setting a value of one (1) into
the controller tag, MCMR.CONTROL.CMDCONTROLP1.CMDTRIGGER for Port 1 or
MCMR.CONTROL.CMDCONTROLP2CMDTRIGGER for Port 2.

The Send Command Control message uses the following parameters in the MSG
configuration:

Status Data can be returned to the processor using a "Get Attribute Single" service type
MSG instruction. If you follow the provided sample ladder logic or use the provided Add-
On Instruction (AOI), the Get Command Control Status MSG will be triggered at the same
time as the Send Command Control message by the same controller tag,
MCMR.CONTROL.CMDCONTROLP1.CMDTRIGGER for Port 1 or
MCMR.CONTROL.CMDCONTROLP2CMDTRIGGER for Port 2.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 148 of 206

The Get Command Control Status message uses the following parameters in the MSG
configuration:

A 5-word response will be passed back through the MSG instruction to the controller tag
array, MCMR.CONTROL.CMDCONTROLP1.CMDCONTROLRESP or
MCMR.CONTROL.CMDCONTROLP1.CMDCONTROLRESP, depending on whether the
Event Command was sent for Port 1 (9901) or Port 2 (9911). The following table lists the
5-word response data received.

Block Response from Module to Processor

Word Offset Definitions

0 9902 or 9912 Command Control ID Number

1 0 = Fail-No Special Commands were added to the Command Queue
>0 = Success - Indicates the number of command control successfully added to the
Command Queue.
Note: This number should match the Command Count (Word 0 of the Send
Command Control MSG)

2 Reserved for future use (will always be zero)

3 Reserved for future use (will always be zero)

5 Reserved for future use (will always be zero)

Please note that the status returned in Word 1 indicates only that the command or
commands from the Send Command Control MSG was or were successfully added to the
top of the Command Queue as the next command or commands to be sent. A "Success"
result in this data block does not indicate:

• Whether the command was successfully sent on the Modbus Network

• Whether the Slave received or responded to the command

• Whether the Slave's response (in any) was valid

There are many potential reasons why a command might fail after having been
successfully added to the Command Queue. For more details, see Standard Modbus
Protocol Errors or Module Communication Error Codes. But, unlike Event Commands,
which do not provide any status feedback on actual command execution, the execution
status of commands sent using Command Control can be obtained.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 149 of 206

Since these commands are part of the Command List, the execution status of these
commands is available in the Master Command Error List. The status shown in this list
will be updated every time the command is executed. Therefore, once the Command
Control MSG was been sent and after a short delay, you can request the command
execution status using a Get Command Error List MSG. See the next section for details.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 150 of 206

Command Error List Blocks (9950, 9951)

The Get Command Error List special function is applicable only when the module's port is
configured as a Modbus Master. Use block identification codes 9950 for Port 1 or 9951for
Port 2 anytime you want to request the Command Error List for the 100 user-configurable
commands that may be sent by that port.

There is a one-to-one correspondence between the position of a command in the
Command List and its corresponding execution status in the Command Error List. Each
word in the Command Error List holds the most recent execution status of each
corresponding command in the MODBUS PORT 1 COMMANDS or MODBUS PORT 2

COMMANDS lists, which were configured in the PCB module configuration file and
downloaded to the module. As each command is executed, whether as part of normal,
repetitive polling or if triggered by Command Control, the status of the most recent
execution will be placed in the appropriate word of the 100-word Command Error List.

The Command Error List is requested using a "Get Attribute Single" service type MSG
instruction. The following illustration shows the MSG instruction configuration for a Get
Command Error List MSG.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 151 of 206

The format of the data returned by the Get Command Error List MSG is shown in the
following table.

Block Response from Module to Processor

Word Offset Data Field(s) Description

0 Number of
Commands to report

This field contains the number of commands to report in the response
message. The value is always 100.

1 Start Index of First
Command

This field always contains a 0. The status of all 100 possible
commands will be returned, starting with Command Index 0, the first
command in the Command List.

2 to 102 Command Error List Each word of this area contains the last execution status value
recorded for the command. The order of status words is the same as
the order of commands in the Command List

A status value of zero (0) in the Command Error List indicates either that the
corresponding command is not used or that it has been executed successfully. Any non-
zero value found in this list indicates that some type of error was encountered while trying
to execute the corresponding command.

There are many potential reasons why a command might fail. For more details, see
Standard Modbus Protocol Errors or Module Communication Error Codes.

Slave Status Blocks (9960, 9961)

The Get Slave Status List special function is available only when the module's port is
configured as a Modbus Master. Use block identification codes 9960 for Port 1 or 9961
for Port 2 to request the current polling state of each Slave device that could be polled by
a Master port.

The results returned in this list have a one-to-one correspondence with the 248 possible
Modbus Slave Device Address values, 0-247. Each word in the Slave Status List
corresponds to a single Modbus Slave Device Address.

This list is updated each time the Master driver attempts to poll a specific Modbus Slave
Device; but gives very little information regarding the success or failure of that poll
attempt. Therefore, this list is not very useful for determining general communications
health, for creating communication failure alarms, or for troubleshooting network
problems. A better tool for those needs is the Command Error List.

The Get Slave Status List message uses the "Get Attribute Single" service type MSG
instruction. The format of the data returned by the MSG is shown in the following table.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 152 of 206

Block Response from Module to Processor

Word Offset Data Field(s) Description

0 Number of Slaves to report This field always receives a value of 248 (-8 as a signed
SINT, 16#F8). A status word for all potential Modbus Slave
Device Addresses will be included in the returned data.

1 Start index of first Slave This field is always 0. All 248 potential Modbus Slave Device
Addresses will have a corresponding Status Word in the
returned data.

2 to 39 Slave Status List data 0 The Slave is inactive, not currently the slave being
actively polled, waiting for its turn to be polled, or not a
Modbus Slave Device Address used in the Command
List for the Master port.

1 The Slave at this specific address is the one currently
being polled or controlled by the Master port. This does
not indicate that the Slave has responded to a poll
request; only that the Master is currently trying to poll
this Slave.

2 The may be thought of as a "Slow Poll" mode, whereby
a Slave with communications errors will be polled at a
lower-than-normal frequency. This status is set by the
Master port whenever it has failed to communicate with
the Slave device and the Port configuration parameter,
ERROR DELAY COUNTER, has been set greater than 0.

The following illustration shows the MSG instruction configuration for a block of this type.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 153 of 206

Warm Boot Block (9998)

The Warm Boot special function is used to restart the module application from within
processor logic. This allows the module to be restarted without removing it from the
chassis or removing power from the chassis. Restarting or "rebooting" the module will
momentarily interrupt normal module operation, such as Modbus polling and backplane
data transfers. It will also clear and reset all module diagnostic counters and user
database memory.

This special function is one of the few that is sent in the Output Image Write Data block
instead of a MSG instruction. Therefore, the effect of triggering a Warm Boot is almost
immediate.

If you follow the sample ladder logic or AOI, the block identification code 9998 for the
Warm Boot special function is embedded in the logic that formulates the Write Data block
to be sent to the module in the Output Image. You can activate this special block logic by
setting the controller tag, MCMR.CONTROL.WARMBOOT, to a value of 1. This will force
an immediate module reboot.

The following table describes the format of the Warm Boot data block constructed by the
processor.

Block Request from Processor to Module

Word Offset Description Length

0 9998 1

1 to 41 Spare 41

Warm Boot and Cold Boot special functions are almost identical in what they do to reboot
the module. The main difference between the two is that the Warm Boot restarts the
internal firmware application without interrupting backplane power to the module.
Therefore, a Warm Boot will complete and the module will return to normal operation a
few seconds faster than when a Cold Boot is used. However, if the module is not
operating correctly and a Warm Boot does not completely restore normal operation, a
Cold Boot may be required and may be more effective at clearing errors and restarting
the application.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 154 of 206

Cold Boot Block (9999)

The Cold Boot special function is used to restart the module application from within
processor logic. This allows the module to be restarted without removing it from the
chassis or removing power from the chassis. Restarting or "rebooting" the module will
momentarily interrupt normal module operation, such as Modbus polling and backplane
data transfers. It will also clear and reset all module diagnostic counters and user
database memory.

This special function is one of the few that is sent in the Output Image Write Data block
instead of a MSG instruction. Therefore, the effect of triggering a Cold Boot is almost
immediate.

If you follow the sample ladder logic or AOI, the block identification code 9999 for the
Cold Boot special function is embedded in the logic that formulates the Write Data block
to be sent to the module in the Output Image. You can activate this special block logic by
setting the controller tag, MCMR.CONTROL.COLDBOOT, to a value of 1. This will force an
immediate module reboot.

The following table describes the format of the Cold Boot data block constructed by the
processor.

Block Request from Processor to Module

Word Offset Description Length

0 9999 1

1 to 41 Spare 41

Warm Boot and Cold Boot special functions are almost identical in what they do to reboot
the module. The main difference between the two is that the Cold Boot restarts the
internal firmware application by interrupting backplane power to the module. Therefore, a
Cold Boot will take a few extra seconds to complete before the module will return to
normal operation than it would if a Warm Boot were used. However, if the module is not
operating correctly, and a Cold Boot may be more effective at clearing errors and
restarting the application than a Warm Boot might be.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 155 of 206

6.3.4 Master Driver

In the Master mode, the MVI56E-MCMR module is responsible for issuing read or write
commands to Slave devices on the Modbus network. These commands are user
configured in the module via the Master Command List received from the ControlLogix
processor or issued directly from the ControlLogix processor (event command control).
Command status is returned to the processor for each individual command in the
command list status block. The location of this status block in the module’s internal
database is user defined. The following flow chart and associated table describe the flow
of data into and out of the module.

1 The Master driver obtains configuration data from the Compact Flash Disk. The
configuration data obtained includes general module configuration data as well as the
Master Command List. These values are used by the Master driver to determine the
type of commands to be issued to Modbus Slave Devices on the Modbus network

2 After configuration, the Master driver begins transmitting read and/or write commands
to the Modbus Slave Devices on the network. If writing data to a Modbus Slave
Device, the data to send in the write command is obtained from the module’s internal
database.

3 Presuming successful processing by the Modbus Slave Device specified in the
command, a response message is received into the Master driver for processing.

4 If the command was a command to read data, the data received from the Modbus
Slave Device is passed into the module’s internal database.

5 Status is returned to the ControlLogix processor for each command in the Master
Command List (page 156).

Refer to Configuration as a Modbus Master (page 45) for a description of the parameters
required to define the virtual Modbus Master port. Command Control Blocks describes
the structure and content of each command.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 156 of 206

Important: Take care when constructing each command in the list for predictable operation of the module. If
two commands write to the same internal database address of the module, the results will not be as desired.
All commands containing invalid data are ignored by the module.

Master Command List

In order to function in the Master Mode, you must define the module’s Master Command
List. This list contains up to 100 individual entries, with each entry containing the
information required to construct a valid command. A valid command includes the
following items:

• Command enable mode: (0) disabled, (1) continuous or (2) conditional

• Slave Node Address

• Command Type: Read or Write up to 125 words (16000 bits) per command

• Database Source and Destination Register Address: The addresses where data will
be written or read.

• Count: The number of words to be transferred - 1 to 125 on FC 3, 4, or 16. Select the
number of bits on FC 1, 2, 15.

As the list is read in from the processor and as the commands are processed, an error
value is maintained in the module for each command. This error list can be transferred to
the processor. The following tables describe the error codes generated by the module.

Note: 125 words is the maximum count allowed by the MODBUS protocol. Some field devices may support
less than the full 125 words. Check with your device manufacturer for the maximum count supported by your
slave.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 157 of 206

6.3.5 Slave Driver

The Slave Driver Mode allows the MVI56E-MCMR module to respond to data read and
write commands issued by a remote Master on the Modbus network. The following flow
chart and associated table describe the flow of data into and out of the module.

1 The Modbus Slave port driver receives the configuration information from the
Compact Flash Disk. This information configures the backplane exchanges, user
memory Read and Write Data areas, the serial ports, and Modbus Slave Device
characteristics. Additionally, the configuration information contains parameters that
can be used to offset data in the database to addresses different from those
requested in messages received from Master units.

2 A Remote Master Device, such as a Modicon PLC or an HMI application, issues a
read or write command to the module’s Modbus Slave Device Address. The port
driver qualifies the message before accepting it into the module.

3 After the module accepts the command, the data is immediately transferred to or from
the internal database in the module. If the command is a read command, the data is
read out of the database and a response message is built. If the command is a write
command, the data is written directly into the database and a response message is
built.

4 After the data processing has been completed in Step 3, the response is issued to the
originating Master Device.

5 Counters are available in the General Module Status (page 140) Block that permit the
ladder logic program to determine the level of activity of the Slave Driver.

Refer to Configuration as a Modbus Slave (page 71) for a list of the parameters that must
be defined for a Slave port.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 158 of 206

6.4 Cable Connections

The application ports on the MVI56E-MCMR module support RS-232, RS-422, and RS-
485 interfaces. Please inspect the module to ensure that the jumpers are set correctly to
correspond with the type of interface you are using.

Note: When using RS-232 with radio modem applications, some radios or modems require hardware
handshaking (control and monitoring of modem signal lines). Enable this in the configuration of the module by
setting the UseCTS parameter to 1.

6.4.1 Ethernet Cable Specifications

The recommended cable is Category 5 or better. A Category 5 cable has four twisted
pairs of wires, which are color-coded and cannot be swapped. The module uses only two
of the four pairs.

The Ethernet ports on the module are Auto-Sensing. You can use either a standard
Ethernet straight-through cable or a crossover cable when connecting the module to an
Ethernet hub, a 10/100 Base-T Ethernet switch, or directly to a PC. The module will
detect the cable type and use the appropriate pins to send and receive Ethernet signals.

Ethernet cabling is like U.S. telephone cables, except that it has eight conductors. Some
hubs have one input that can accept either a straight-through or crossover cable,
depending on a switch position. In this case, you must ensure that the switch position and
cable type agree.

Refer to Ethernet cable configuration (page 159) for a diagram of how to configure
Ethernet cable.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 159 of 206

6.4.2 Ethernet Cable Configuration

Note: The standard connector view shown is color-coded for a straight-through cable.

Crossover cable Straight- through cable

RJ-45 PIN RJ-45 PIN

1 Rx+ 3 Tx+

2 Rx- 6 Tx-

3 Tx+ 1 Rx+

6 Tx- 2 Rx-

RJ-45 PIN RJ-45 PIN

1 Rx+ 1 Tx+

2 Rx- 2 Tx-

3 Tx+ 3 Rx+

6 Tx- 6 Rx-

6.4.3 Ethernet Performance

Ethernet performance on the MVI56E-MCMR module can affect the operation of the
MCMR application ports in the following ways.

• Accessing the web interface (refreshing the page, downloading files, and so on) may
affect MCMR performance

• High Ethernet traffic may impact MCMR performance (consider CIPconnect (page 87)
for these applications and disconnect the module Ethernet port from the network).

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 160 of 206

6.4.4 RS-232 Application Port(s)

When the RS-232 interface is selected, the use of hardware handshaking (control and
monitoring of modem signal lines) is user definable. If no hardware handshaking will be
used, here are the cable pinouts to connect to the port.

RS-232: Modem Connection (Hardware Handshaking Required)

This type of connection is required between the module and a modem or other
communication device.

The "Use CTS Line" parameter for the port configuration should be set to 'Y' for most
modem applications.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 161 of 206

RS-232: Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module requires
hardware handshaking (control and monitoring of modem signal lines).

RS-232: Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field device
communication port.

Note: For most null modem connections where hardware handshaking is not required, the Use CTS Line
parameter should be set to N and no jumper will be required between Pins 7 (RTS) and 8 (CTS) on the
connector. If the port is configured with the Use CTS Line set to Y, then a jumper is required between the
RTS and the CTS lines on the port connection.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 162 of 206

6.4.5 RS-422

The RS-422 interface requires a single four or five wire cable. The Common connection is
optional, depending on the RS-422 network devices used. The cable required for this
interface is shown below:

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 163 of 206

6.4.6 RS-485 Application Port(s)

The RS-485 interface requires a single two or three wire cable. The Common connection
is optional, depending on the RS-485 network devices used. The cable required for this
interface is shown below:

Note: This type of connection is commonly called a RS-485 half-duplex, 2-wire connection. If you have RS-
485 4-wire, full-duplex devices, they can be connected to the gateway's serial ports by wiring together the
TxD+ and RxD+ from the two pins of the full-duplex device to Pin 1 on the gateway and wiring together the
TxD- and RxD- from the two pins of the full-duplex device to Pin 8 on the gateway. As an alternative, you
could try setting the gateway to use the RS-422 interface and connect the full-duplex device according to the
RS-422 wiring diagram. For additional assistance, please contact ProSoft Technical Support.

Note: Depending upon devices on the network, if there are problems in RS-485 communication that can be
attributed to the signal echoes or reflections, then consider adding 120 OHM terminating resistors at both
ends of the RS-485 line.

RS-485 and RS-422 Tip

If communication in the RS-422 or RS-485 mode does not work at first, despite all
attempts, try switching termination polarities. Some manufacturers interpret + and -, or A
and B, polarities differently.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 164 of 206

6.4.7 DB9 to RJ45 Adaptor (Cable 14)

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 165 of 206

6.5 MVI56E-MCMR Status Data Definition

This section contains a description of the members present in the MCMR.STATUS
object. This data is transferred from the module to the processor in a message block.

Offset Content Description

0 Program Scan Count This value is incremented each time a complete program cycle occurs
in the module.

1 to 2 Product Code These two registers contain the product code of "MCM".

3 to 4 Product Version These two registers contain the product version for the current running
software.

5 to 6 Operating System These two registers contain the month and year values for the
program operating system.

7 to 8 Run Number These two registers contain the run number value for the currently
running software.

9 Port 1 Command List
Requests

This field contains the number of requests made from this port to
Slave devices on the network.

10 Port 1 Command List
Response

This field contains the number of Slave response messages received
on the port.

11 Port 1 Command List
Errors

This field contains the number of command errors processed on the
port. These errors could be due to a bad response or command.

12 Port 1 Requests This field contains the total number of messages sent out of the port.

13 Port 1 Responses This field contains the total number of messages received on the port.

14 Port 1 Errors Sent This field contains the total number of message errors sent out of the
port.

15 Port 1 Errors Received This field contains the total number of message errors received on the
port.

16 Port 2 Command List
Requests

This field contains the number of requests made from this port to
Slave devices on the network.

17 Port 2 Command List
Response

This field contains the number of Slave response messages received
on the port.

18 Port 2 Command List
Errors

This field contains the number of command errors processed on the
port. These errors could be due to a bad response or command.

19 Port 2 Requests This field contains the total number of messages sent out the port.

20 Port 2 Responses This field contains the total number of messages received on the port.

21 Port 2 Errors Sent This field contains the total number of message errors sent out the
port.

22 Port 2 Errors Received This field contains the total number of message errors received on the
port.

23 Read Block Count This field contains the total number of read blocks transferred from the
module to the processor.

24 Write Block Count This field contains the total number of write blocks transferred from
the module to the processor.

25 Parse Block Count This field contains the total number of blocks successfully parsed that
were received from the processor.

26 Command Event Block
Count

This field contains the total number of command event blocks
received from the processor.

27 Command Block Count This field contains the total number of command blocks received from
the processor.

28 Error Block Count This field contains the total number of block errors recognized by the
module.

29 Port 1 Current Error For a Slave port, this field contains the value of the current error code
returned. For a Master port, this field contains the index of the
currently executing command.

30 Port 1 Last Error For a Slave port, this field contains the value of the last error code
returned. For a Master port, this field contains the index of the
command with the error.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 166 of 206

Offset Content Description

31 Port 2 Current Error For a Slave port, this field contains the value of the current error code
returned. For a Master port, this field contains the index of the
currently executing command.

32 Port 2 Last Error For a Slave port, this field contains the value of the last error code
returned. For a Master port, this field contains the index of the
command with an error.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 167 of 206

6.6 Modbus Protocol Specification

The following pages give additional reference information regarding the Modbus protocol
commands supported by the MVI56E-MCMR.

6.6.1 Commands Supported by the Module

The format of each command in the list depends on the Modbus Function Code being
executed.

The following table lists the functions supported by the module.

Function
Code

Definition Supported in Master Supported in Slave

1 Read Coil Status X X

2 Read Input Status X X

3 Read Holding Registers X X

4 Read Input Registers X X

5 Set Single Coil X X

6 Single Register Write X X

8 Diagnostics X

15 Multiple Coil Write X X

16 Multiple Register Write X X

17 Report Slave ID X

22 Mask Write 4X X

23 Read/Write X

Each command list record has the same general format. The first part of the record
contains the information relating to the communication module and the second part
contains information required to interface to the MODBUS slave device.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 168 of 206

6.6.2 Read Coil Status (Function Code 01)

Query

This function allows the user to obtain the ON/OFF status of logic coils used to control
discrete outputs from the addressed Slave only. Broadcast mode is not supported with
this function code. In addition to the Slave address and function fields, the message
requires that the information field contain the initial coil address to be read (Starting
Address) and the number of locations that will be interrogated to obtain status data.

The addressing allows up to 2000 coils to be obtained at each request; however, the
specific Slave device may have restrictions that lower the maximum quantity. The coils
are numbered from zero; (coil number 1 = zero, coil number 2 = one, coil number 3 = two,
and so on).

The following table is a sample read output status request to read coils 0020 to 0056 from
Slave device number 11.

Addr Func Data Start Pt Hi Data Start Pt Lo Data # Of Pts Ho Data # Of Pts Lo Error Check Field

11 01 00 13 00 25 CRC

Response

An example response to Read Coil Status is as shown in Figure C2. The data is packed
one bit for each coil. The response includes the Slave address, function code, quantity of
data characters, the data characters, and error checking. Data will be packed with one bit
for each coil (1 = ON, 0 = OFF). The low order bit of the first character contains the
addressed coil, and the remainder follow. For coil quantities that are not even multiples of
eight, the last characters will be filled in with zeros at high order end. The quantity of data
characters is always specified as quantity of RTU characters, that is, the number is the
same whether RTU or ASCII is used.

Because the Slave interface device is serviced at the end of a controller's scan, data will
reflect coil status at the end of the scan. Some Slaves will limit the quantity of coils
provided each scan; thus, for large coil quantities, multiple PC transactions must be made
using coil status from sequential scans.

Addr Func Byte
Count

Data Coil
Status 20 to
27

Data Coil
Status 28 to
35

Data Coil
Status 36 to
43

Data Coil
Status 44 to
51

Data Coil
Status 52 to
56

Error
Check
Field

11 01 05 CD 6B B2 OE 1B CRC

The status of coils 20 to 27 is shown as CD(HEX) = 1100 1101 (Binary). Reading left to
right, this shows that coils 27, 26, 23, 22, and 20 are all on. The other coil data bytes are
decoded similarly. Due to the quantity of coil statuses requested, the last data field, which
is shown 1B (HEX) = 0001 1011 (Binary), contains the status of only 5 coils (52 to 56)
instead of 8 coils. The 3 left most bits are provided as zeros to fill the 8-bit format.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 169 of 206

6.6.3 Read Input Status (Function Code 02)

Query

This function allows the user to obtain the ON/OFF status of discrete inputs in the
addressed Slave PC Broadcast mode is not supported with this function code. In addition
to the Slave address and function fields, the message requires that the information field
contain the initial input address to be read (Starting Address) and the number of locations
that will be interrogated to obtain status data.

The addressing allows up to 2000 inputs to be obtained at each request; however, the
specific Slave device may have restrictions that lower the maximum quantity. The inputs
are numbered form zero; (input 10001 = zero, input 10002 = one, input 10003 = two, and
so on, for a 584).

The following table is a sample read input status request to read inputs 10197 to 10218
from Slave number 11.

Addr Func Data Start Pt Hi Data Start Pt Lo Data # of Pts Hi Data # of Pts Lo Error Check Field

11 02 00 C4 00 16 CRC

Response

An example response to Read Input Status is as shown in Figure C4. The data is packed
one bit for each input. The response includes the Slave address, function code, quantity
of data characters, the data characters, and error checking. Data will be packed with one
bit for each input (1=ON, 0=OFF). The lower order bit of the first character contains the
addressed input, and the remainder follow. For input quantities that are not even
multiples of eight, the last characters will be filled in with zeros at high order end. The
quantity of data characters is always specified as a quantity of RTU characters, that is,
the number is the same whether RTU or ASCII is used.

Because the Slave interface device is serviced at the end of a controller's scan, data will
reflect input status at the end of the scan. Some Slaves will limit the quantity of inputs
provided each scan; thus, for large coil quantities, multiple PC transactions must be made
using coil status for sequential scans.

Addr Func Byte
Count

Data Discrete Input
10197 to 10204

Data Discrete Input
10205 to 10212

Data Discrete Input
10213 to 10218

Error Check Field

11 02 03 AC DB 35 CRC

The status of inputs 10197 to 10204 is shown as AC (HEX) = 10101 1100 (binary).
Reading left to right, this show that inputs 10204, 10202, and 10199 are all on. The other
input data bytes are decoded similar.

Due to the quantity of input statuses requested, the last data field which is shown as 35
HEX = 0011 0101 (binary) contains the status of only 6 inputs (10213 to 102180) instead
of 8 inputs. The two left-most bits are provided as zeros to fill the 8-bit format.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 170 of 206

6.6.4 Read Holding Registers (Function Code 03)

Query

Read Holding Registers (03) allows the user to obtain the binary contents of holding
registers 4xxxx in the addressed Slave. The registers can store the numerical values of
associated timers and counters which can be driven to external devices. The addressing
allows up to 125 registers to obtained at each request; however, the specific Slave device
may have restriction that lower this maximum quantity. The registers are numbered form
zero (40001 = zero, 40002 = one, and so on). The broadcast mode is not allowed.

The example below reads registers 40108 through 40110 from Slave 584 number 11.

Addr Func Data Start Reg Hi Data Start Reg Lo Data # of Regs
Hi

Data # of Regs Lo Error Check Field

11 03 00 6B 00 03 CRC

Response

The addressed Slave responds with its address and the function code, followed by the
information field. The information field contains 1 byte describing the quantity of data
bytes to be returned. The contents of the registers requested (DATA) are two bytes each,
with the binary content right justified within each pair of characters. The first byte includes
the high order bits and the second, the low order bits.

Because the Slave interface device is normally serviced at the end of the controller's
scan, the data will reflect the register content at the end of the scan. Some Slaves will
limit the quantity of register content provided each scan; thus for large register quantities,
multiple transmissions will be made using register content from sequential scans.

In the example below, the registers 40108 to 40110 have the decimal contents 555, 0,
and 100 respectively.

Addr Func ByteCnt Hi Data Lo Data Hi Data Lo Data Hi Data Lo Data Error Check Field

11 03 06 02 2B 00 00 00 64 CRC

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 171 of 206

6.6.5 Read Input Registers (Function Code 04)

Query

Function code 04 obtains the contents of the controller's input registers at addresses
3xxxx. These locations receive their values from devices connected to the I/O structure
and can only be referenced, not altered from within the controller, The addressing allows
up to 125 registers to be obtained at each request; however, the specific Slave device
may have restrictions that lower this maximum quantity. The registers are numbered for
zero (30001 = zero, 30002 = one, and so on). Broadcast mode is not allowed.

The example below requests the contents of register 3009 in Slave number 11.

Addr Func Data Start Reg Hi Data Start Reg Lo Data # of Regs Hi Data # of Regs Lo Error Check Field

11 04 00 08 00 01 CRC

Response

The addressed Slave responds with its address and the function code followed by the
information field. The information field contains 1 byte describing the quantity of data
bytes to be returned. The contents of the registers requested (DATA) are 2 bytes each,
with the binary content right justified within each pair of characters. The first byte includes
the high order bits and the second, the low order bits.

Because the Slave interface is normally serviced at the end of the controller's scan, the
data will reflect the register content at the end of the scan. Each PC will limit the quantity
of register contents provided each scan; thus for large register quantities, multiple PC
scans will be required, and the data provided will be form sequential scans.

In the example below the register 3009 contains the decimal value 0.

Addr Func Byte Count Data Input Reg Hi Data Input Reg Lo Error Check Field

11 04 02 00 00 E9

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 172 of 206

6.6.6 Force Single Coil (Function Code 05)

Query

This message forces a single coil either ON or OFF. Any coil that exists within the
controller can be forced to either state (ON or OFF). However, because the controller is
actively scanning, unless the coil is disabled, the controller can also alter the state of the
coil. Coils are numbered from zero (coil 0001 = zero, coil 0002 = one, and so on). The
data value 65,280 (FF00 HEX) will set the coil ON and the value zero will turn it OFF; all
other values are illegal and will not affect that coil.

The use of Slave address 00 (Broadcast Mode) will force all attached Slaves to modify
the desired coil.

Note: Functions 5, 6, 15, and 16 are the only messages that will be recognized as valid for broadcast.

The example below is a request to Slave number 11 to turn ON coil 0173.

Addr Func Data Coil # Hi Data Coil # Lo Data On/Off Ind Data Error Check Field

11 05 00 AC FF 00 CRC

Response

The normal response to the Command Request is to re-transmit the message as
received after the coil state has been altered.

Addr Func Data Coil # Hi Data Coil # Lo Data On/Off Data Error Check Field

11 05 00 AC FF 00 CRC

The forcing of a coil via Modbus function 5 will be accomplished regardless of whether
the addressed coil is disabled or not (In ProSoft products, the coil is only affected if the
necessary ladder logic is implemented).

Note: The Modbus protocol does not include standard functions for testing or changing the DISABLE state of
discrete inputs or outputs. Where applicable, this may be accomplished via device specific Program
commands (In ProSoft products, this is only accomplished through ladder logic programming).

Coils that are reprogrammed in the controller logic program are not automatically cleared
upon power up. Thus, if such a coil is set ON by function Code 5 and (even months later),
an output is connected to that coil, the output will be "hot".

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 173 of 206

6.6.7 Preset Single Register (Function Code 06)

Query

Function (06) allows the user to modify the contents of a holding register. Any holding
register that exists within the controller can have its contents changed by this message.
However, because the controller is actively scanning, it also can alter the content of any
holding register at any time. The values are provided in binary up to the maximum
capacity of the controller unused high order bits must be set to zero. When used with
Slave address zero (Broadcast mode) all Slave controllers will load the specified register
with the contents specified.

Note Functions 5, 6, 15, and 16 are the only messages that will be recognized as valid for broadcast.

Addr Func Data Start Reg
Hi

Data Start Reg
Lo

Data # of Regs Hi Data # of Regs Lo Error Check Field

11 06 00 01 00 03 CRC

Response

The response to a preset single register request is to re-transmit the query message after
the register has been altered.

Addr Func Data Reg Hi Data Reg Lo Data Input Reg Hi Data Input Reg Lo Error Check Field

11 06 00 01 00 03 CRC

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 174 of 206

6.6.8 Diagnostics (Function Code 08)

MODBUS function code 08 provides a series of tests for checking the communication
system between a Master device and a slave, or for checking various internal error
conditions within a slave.

The function uses a two-byte sub-function code field in the query to define the type of test
to be performed. The slave echoes both the function code and sub-function code in a
normal response. Some of the diagnostics commands cause data to be returned from the
remote device in the data field of a normal response.

In general, issuing a diagnostic function to a remote device does not affect the running of
the user program in the remote device. Device memory bit and register data addresses
are not accessed by the diagnostics. However, certain functions can optionally reset error
counters in some remote devices.

A server device can, however, be forced into 'Listen Only Mode' in which it will monitor
the messages on the communications system but not respond to them. This can affect
the outcome of your application program if it depends upon any further exchange of data
with the remote device. Generally, the mode is forced to remove a malfunctioning remote
device from the communications system.

Sub-function Codes Supported

Only Sub-function 00 is supported by the MVI56E-MCMR module.

00 Return Query Data

The data passed in the request data field is to be returned (looped back) in the response.
The entire response message should be identical to the request.

Sub-function Data Field (Request) Data Field (Response)

00 00 Any Echo Request Data

Example and State Diagram

Here is an example of a request to remote device to Return Query Data. This uses a sub-
function code of zero (00 00 hex in the two-byte field). The data to be returned is sent in
the two-byte data field (A5 37 hex).

Request Response

Field Name (Hex) Field Name (Hex)

Function 08 Function 08

Sub-function Hi 00 Sub-function Hi 00

Sub-function Lo 00 Sub-function Lo 00

Data Hi A5 Data Hi A5

Data Lo 37 Data Lo 27

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 175 of 206

The data fields in responses to other kinds of queries could contain error counts or other
data requested by the sub-function code.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 176 of 206

6.6.9 Force Multiple Coils (Function Code 15)

Query

This message forces each coil in a consecutive block of coils to a desired ON or OFF
state. Any coil that exists within the controller can be forced to either state (ON or OFF).
However, because the controller is actively scanning, unless the coils are disabled, the
controller can also alter the state of the coil. Coils are numbered from zero (coil 00001 =
zero, coil 00002 = one, and so on). The desired status of each coil is packed in the data
field, one bit for each coil (1= ON, 0= OFF). The use of Slave address 0 (Broadcast
Mode) will force all attached Slaves to modify the desired coils.

Note: Functions 5, 6, 15, and 16 are the only messages (other than Loopback Diagnostic Test) that will be
recognized as valid for broadcast.

The following example forces 10 coils starting at address 20 (13 HEX). The two data
fields, CD =1100 and 00 = 0000 000, indicate that coils 27, 26, 23, 22, and 20 are to be
forced on.

Addr Func Hi Addr Lo
Addr

Quantity Byte
Cnt

Data Coil Status
20 to 27

Data Coil Status
28 to 29

Error Check
Field

11 0F 00 13 00 0A 02 CD 00 CRC

Response

The normal response will be an echo of the Slave address, function code, starting
address, and quantity of coils forced.

Addr Func Hi Addr Lo Addr Quantity Error Check Field

11 0F 00 13 00 0A CRC

The writing of coils via Modbus function 15 will be accomplished regardless of whether
the addressed coils are disabled or not.

Coils that are unprogrammed in the controller logic program are not automatically cleared
upon power up. Thus, if such a coil is set ON by function code 15 and (even months later)
an output is connected to that coil, the output will be hot.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 177 of 206

6.6.10 Preset Multiple Registers (Function Code 16)

Query

Holding registers existing within the controller can have their contents changed by this
message (a maximum of 60 registers). However, because the controller is actively
scanning, it also can alter the content of any holding register at any time. The values are
provided in binary up to the maximum capacity of the controller (16-bit for the 184/384
and 584); unused high order bits must be set to zero.

Note: Function codes 5, 6, 15, and 16 are the only messages that will be recognized as valid for broadcast.

Addr Func Hi
Addr

Lo Add Quantity Byte
Cnt

Hi
Data

Lo
Data

Hi
Data

Lo Data Error Check
Field

11 10 00 87 00 02 04 00 0A 01 02 CRC

Response

The normal response to a function 16 query is to echo the address, function code,
starting address and number of registers to be loaded.

Addr Func Hi Addr Lo Addr Quantity Error Check Field

11 10 00 87 00 02 56

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 178 of 206

6.6.11 Modbus Exception Responses

When a Modbus Master sends a request to a Slave device, it expects a normal response.
One of four possible events can occur from the Master's query:

• If the server device receives the request without a communication error, and can
handle the query normally, it returns a normal response.

• If the server does not receive the request due to a communication error, no response
is returned. The Master program will eventually process a timeout condition for the
request.

• If the server receives the request, but detects a communication error (parity, LRC,
CRC, ...), no response is returned. The Master program will eventually process a
timeout condition for the request.

• If the server receives the request without a communication error, but cannot handle it
(for example, if the request is to read a non-existent output or register), the server will
return an exception response informing the Master of the nature of the error.

The exception response message has two fields that differentiate it from a normal
response:

Function Code Field: In a normal response, the server echoes the function code of the
original request in the function code field of the response. All function codes have a most-
significant bit (MSB) of 0 (their values are all below 80 hexadecimal). In an exception
response, the server sets the MSB of the function code to 1. This makes the function
code value in an exception response exactly 80 hexadecimal higher than the value would
be for a normal response.

With the function code's MSB set, the Master's application program can recognize the
exception response and can examine the data field for the exception code.

Data Field: In a normal response, the server may return data or statistics in the data field
(any information that was requested in the request). In an exception response, the server
returns an exception code in the data field. This defines the server condition that caused
the exception.

The following table shows an example of a Master request and server exception
response.

Request Response

Field Name (Hex) Field Name (Hex)

Function 01 Function 81

Starting Address Hi 04 Exception Code 02

Starting Address Lo A1

Quantity of Outputs Hi 00

Quantity of Outputs Lo 01

In this example, the Master addresses a request to server device. The function code (01)
is for a Read Output Status operation. It requests the status of the output at address 1245
(04A1 hex). Note that only that one output is to be read, as specified by the number of
outputs field (0001). If the output address is non-existent in the server device, the server
will return the exception response with the exception code shown (02). This specifies an
illegal data address for the Slave.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 179 of 206

Modbus Exception Codes

Code Name Description

01 Illegal Function The function code received in the query is not an allowable action
for the Slave. This may be because the function code is only
applicable to newer devices, and was not implemented in the unit
selected. It could also indicate that the Slave is in the wrong state
to process a request of this type, for example because it is
unconfigured and is being asked to return register values.

02 Illegal Data Address The data address received in the query is not an allowable address
for the Slave. More specifically, the combination of reference
number and transfer length is invalid. For a controller with 100
registers, a request with offset 96 and length 4 would succeed; a
request with offset 96 and length 5 will generate exception 02.

03 Illegal Data Value A value contained in the query data field is not an allowable value
for Slave. This indicates a fault in the structure of the remainder of
a complex request, such as that the implied length is incorrect. It
specifically does not mean that a data item submitted for storage in
a register has a value outside the expectation of the application
program, because the Modbus protocol is unaware of the
significance of any particular value of any particular register.

04 Slave Device Failure An unrecoverable error occurred while the Slave was attempting to
perform the requested action.

05 Acknowledge Specialized use in conjunction with programming commands. The
Slave has accepted the request and is processing it, but a long
duration of time will be required to do so. This response is returned
to prevent a timeout error from occurring in the Master. The Master
can next issue a poll program complete message to determine if
processing is completed.

06 Slave Device Busy Specialized use in conjunction with programming commands. The
Slave is engaged in processing a long-duration program command.
The Master should retransmit the message later when the Slave is
free.

08 Memory Parity Error Specialized use in conjunction with function codes 20 and 21 and
reference type 6, to indicate that the extended file area failed to
pass a consistency check. The Slave attempted to read record file,
but detected a parity error in the memory. The Master can retry the
request, but service may be required on the Slave device.

0a Gateway Path Unavailable Specialized use in conjunction with gateways, indicates that the
gateway was unable to allocate an internal communication path
from the input port to the output port for processing the request.
Usually means that the gateway is misconfigured or overloaded.

0b Gateway Target Device
Failed To Respond

Specialized use in conjunction with gateways, indicates that no
response was obtained from the target device. Usually means that
the device is not present on the network.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 180 of 206

6.7 Using the Optional Add-On Instruction Rung Import

6.7.1 Before You Begin

• Make sure that you have installed RSLogix 5000 version 16 (or later).

• Download the Optional Add-On file
MVI56(E)MCMR_Optional_AddOn_Rung_vXXX.L5X from
www.prosoft-technology.com.

• Save a copy in a folder in your PC.

6.7.2 Overview

The Optional Add-On Instruction Rung Import contains optional logic for MVI56E-MCMR
applications to perform the following tasks.

• Read/Write Ethernet Configuration

Allows the processor to read or write the module IP address, netmask and gateway
values.

Note: This is an optional feature. You can perform the same task through PCB (ProSoft Configuration
Builder). Even if your PC is in a different network group you can still access the module through PCB by
setting a temporary IP address.

• Read/Write Module Clock Value

Allows the processor to read and write the module clock settings. The module clock
stores the last time that the Ethernet configuration was changed. The date and time of
the last Ethernet configuration change is displayed in the scrolling LED during module
power up.

Important: The Optional Add-On Instruction only supports the two features listed above. You must use the
sample ladder logic for all other features including backplane transfer of MCMR data.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 181 of 206

6.7.3 Installing the Rung Import with Optional Add-On Instruction

1 Right-click on an empty rung in the MainRoutine of your existing ladder logic and
choose IMPORT RUNG.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 182 of 206

2 Navigate to the folder where you saved
MVI56(E)MCMR_Optional_AddOn_Rung_vXXX.L5X and select the file. Click the
IMPORT button.

3 In the IMPORT CONFIGURATION window, click OK.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 183 of 206

The Optional Add-On instruction will be now visible in the ladder logic. Observe that
the procedure has also imported data types and controller tags associated to the
Optional Add-On instruction.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 184 of 206

You will notice that new tags have been imported: four MESSAGE tags,
MVI56EMCMRCLOCK and MVI56EMCMRETHERNET tags.

4 In the Optional Add-On instruction, click the [...] button next to each MSG tag to open
the MESSAGE CONFIGURATION TAG.

5 Click the COMMUNICATION tab and click the BROWSE button as follows.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 185 of 206

6 Select the module to configure the message path.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 186 of 206

6.7.4 Reading the Ethernet Settings from the Module

Expand the MVI56MCMRETHERNET controller tag and move a value of 1 to
MVI56MCMRETHERNET.READ.

The bit will be automatically reset and the current Ethernet settings will be copied to
MVI56MCMRETHERNET controller tag as follows.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 187 of 206

To check the status of the message, refer to the READETHERNETMSG tag.

6.7.5 Writing the Ethernet Settings to the Module

1 Expand the MVI56EMCMRETHERNET controller tag.

2 Set the new Ethernet configuration in MVI56EMCMRETHERNET.CONFIG

3 Move a value of 1 to MVI56MCMRETHERNET.WRITE

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 188 of 206

4 After the message is executed, the MVI56MCMRETHERNET.WRITE bit resets to 0.

5 To check the status of the message, refer to the WRITEETHERNETMSG tag.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 189 of 206

6.7.6 Reading the Clock Value from the Module

Expand the MVI56MCMRCLOCK controller tag and move a value of 1 to
MVI56MCMRCLOCK.READ

The bit will be automatically reset and the current clock value will be copied to
MVI56MCMRCLOCK.CONFIG controller tag as follows.

To check the status of the message, refer to the READCLOCKMSG tag.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 190 of 206

6.7.7 Writing the Clock Value to the Module

1 Expand the MVI56MCMRCLOCK controller tag.

2 Set the new Clock value in MVI56MCMRCLOCK.CONFIG

3 Move a value of 1 to MVI56MCMRCLOCK.WRITE

4 The bit will be automatically reset to 0.

5 To check the status of the message, refer to the WRITECLOCKMSG tag.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 191 of 206

6.8 Using the Sample Program - RSLogix 5000 Version 15 and earlier

he sample program included with your MVI56E-MCMR module contains predefined
controller tags, configuration information, data types, and ladder logic that allow the
module to communicate between the ControlLogix processor and a network of MCMR
devices. For most applications, the sample program will work without modification.

6.8.1 Adding the Sample Ladder to an Existing Application

1 Copy the Controller Tags (page 108) from the sample program.
2 Copy the User-Defined Data Types (page 108) from the sample program.
3 Copy the Ladder Rungs from the sample program.
4 Save and Download (page 36) the new application to the controller and place the

processor in run mode.

If all the configuration parameters are set correctly and the module is attached to the
Modbus network, the module's Application LED (APP LED) should remain off and the
backplane activity LED (BP ACT) should blink rapidly. If you encounter errors, refer to
Diagnostics and Troubleshooting (page 113, page 119).

6.8.2 Add the Module to the Project

Important: The following steps describe how to install and configure the MVI56E-MCMR module with
RSLogix 5000 version 15 or older. If you are using RSLogix 5000 version 16, please refer to Sample Add-On
Instruction Import Procedure.

Note: The RSLogix software must be in "offline" mode to add the module to a project.

1 In the CONTROLLER ORGANIZATION window, select I/O CONFIGURATION, and then click
the right mouse button to open a shortcut menu. On the shortcut menu, choose NEW

MODULE.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 192 of 206

This action opens the SELECT MODULE dialog box.

2 Select 1756-MODULE (GENERIC 1756 MODULE) from the list, and then click OK. This
action opens the NEW MODULE dialog box.

3 In the NEW MODULE dialog box, you must select DATA - INT as the Comm Format.
Configure the Assembly Instance and Size parameters as shown in the following
illustration.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 193 of 206

4 Click OK to save your module settings. This action opens the MODULE PROPERTIES
dialog box.

5 In the CONNECTION tab, the Requested Packet Interval (RPI) value represents the
time interval at which the module will attempt backplane communication with the
processor. This value should not be set to less than 1 millisecond. Values between 1
and 10 milliseconds should work with most applications. If the module is installed in a
Remote chassis and accessed via ControlNet, the RPI must not be set to a value
lower than the ControlNet Network Update Time (NUT). Doing so will cause
scheduling errors in RSNetworx for ControlNet.

6 Click OK to save your settings. Notice that the module now appears in the
CONTROLLER ORGANIZATION window.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 194 of 206

6.8.3 Copying the User Defined Data Types

Next, copy the User Defined Data Types from the sample program to your existing
program. These data types contain configuration information, status, commands and
other functions used by the program.

1 Arrange the two RSLogix 5000 windows on your desktop so that they are side-by-
side.

2 In the CONTROLLER ORGANIZATION pane in the Sample Program, expand the DATA

TYPES folder until the list of User-Defined data types is visible.
3 In the Sample Program window, select one data type at a time, and then drag the

data type to the User-Defined data types folder in your existing program.
4 Repeat these steps until you have copied all of the data types from the sample

program into your existing application.

Note: Data types prefixed with an underscore [_] are used in optional routines, and need not be copied
unless your application requires them. Refer to MVI56E-MCMR User Defined Data Types for a description of
the usage for each data type.

6.8.4 Copy Sample Controller Tags

The sample program contains the following controller tag arrays:

• MCMR.DATA.READDATA and MCMR.DATA.WRITEDATA tags hold all data related to
the database.

• MCMR.STATUS holds all status data related to the module (type MCMRModuleDef).

• MCMR.CONTROL holds all the tags needed to support the Special Function Blocks

• MCMR.UTIL holds module logic control 'scratchpad' tags.

The sample ladder logic also includes controller tags for the MSG instructions to pass
data between the module and the ControlLogix processor.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 195 of 206

6.8.5 Add the Ladder Logic

If you are creating your own ladder logic, copy the rungs shown in the following
illustration from the sample program to your application.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 196 of 206

6.8.6 Ladder Logic - RSLogix Version 15 and Lower

MSG_BLKS

The MSG_BLKS routine passes data between the module and the ControlLogix
processor using MSG instructions. Data transferred using these blocks is of low-priority
and completely under control of the ladder logic.

The first rung requests the module’s error/status data:

The following illustration shows the format of the MSG block.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 197 of 206

After the block is read from the module, the data received should be copied to the
module’s status controller tag area. The following illustration shows the ladder logic to
accomplish this task.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 198 of 206

The next rung passes a block 9901 from the processor to the module:

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 199 of 206

The following illustrations show the format of the MSG block.

The format of the MSG block for this rung is as shown in the previous illustration except it
used the MCMRCmds[0] for the source and destination tags.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 200 of 206

The next rung performs the functions of a 9902 block:

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 201 of 206

The following illustrations show the format of the MSG block.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 202 of 206

The next rung requests a set of command list errors:

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 203 of 206

The following illustration shows the format of the MSG block.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 204 of 206

The data contained in the CmdErrData controller tag determines the set of errors
returned.

MVI56E-MCMR ♦ ControlLogix® Platform Reference
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 205 of 206

The following illustration shows the format of the MSG block.

MVI56E-MCMR ♦ ControlLogix® Platform Support, Service & Warranty
Modbus Communication Module with Reduced Data Block User Manual

ProSoft Technology, Inc. Page 206 of 206

7 Support, Service & Warranty

7.1 Installing ProSoft Configuration Builder

ProSoft Technology, Inc. is committed to providing the most efficient and effective
support possible. Before calling, please gather the following information to assist in
expediting this process:

1 Product Version Number

2 System architecture

3 Network details

If the issue is hardware related, we will also need information regarding:

1 Module configuration and associated ladder files, if any

2 Module operation and any unusual behavior

3 Configuration/Debug status information

4 LED patterns

5 Details about the interfaced serial, Ethernet or Fieldbus devices

North America (Corporate Location) Europe / Middle East / Africa Regional Office

Phone: +1 661-716-5100
ps.prosofttechnology@belden.com
Languages spoken: English, Spanish

REGIONAL TECH SUPPORT
ps.support@belden.com

Phone: +33.(0)5.34.36.87.20
ps.europe@belden.com
Languages spoken: English, French, Hindi, Italian

REGIONAL TECH SUPPORT
ps.support.emea@belden.com

Latin America Regional Office Asia Pacific Regional Office

Phone: +52.222.264.1814
ps.latinam@belden.com
Languages spoken: English, Spanish,
Portuguese

REGIONAL TECH SUPPORT
ps.support.la@belden.com

Phone: +60.3.2247.1898
ps.asiapc@belden.com
Languages spoken: Bahasa, Chinese, English,
Hindi, Japanese, Korean, Malay

REGIONAL TECH SUPPORT
ps.support.ap@belden.com

For additional ProSoft Technology contacts in your area, please visit:
www.prosoft-technology.com/About-Us/Contact-Us

7.2 Warranty Information

For complete details regarding ProSoft Technology’s legal terms and conditions,
please see:
www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions

For Return Material Authorization information, please see:
www.prosoft-technology.com/Services-Support/Return-Material-Instructions

mailto:ps.prosofttechnology@belden.com
mailto:ps.support@belden.com
mailto:ps.europe@belden.com
mailto:ps.support.emea@belden.com
mailto:ps.latinam@belden.com
mailto:ps.support.la@belden.com
mailto:ps.asiapc@belden.com
mailto:ps.support.ap@belden.com
https://www.prosoft-technology.com/About-Us/Contact-Us
https://www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions
https://www.prosoft-technology.com/Services-Support/Return-Material-Instructions

	Your Feedback Please
	How to Contact Us
	Content Disclaimer
	1 Start Here
	1.1 What's New?
	1.2 System Requirements
	1.3 Deployment Checklist
	1.4 Package Contents
	1.5 Setting Jumpers
	1.6 Installing the Module in the Rack
	1.7 Importing the Sample Add-On Instruction
	1.7.1 Before You Begin
	1.7.2 About the Optional Add-On Instruction

	1.8 Creating a New RSLogix 5000 Project
	1.8.1 Creating the Remote Network
	1.8.2 Creating the Module in a Remote Rack
	1.8.3 Creating the Module in a Local Rack
	1.8.4 Importing the Ladder Rung
	Adding Multiple Modules (Optional)
	Configuring the Path for Message Blocks

	1.8.5 Adjusting the Input and Output Array Sizes

	1.9 Connecting Your PC to the ControlLogix Processor
	1.10 Downloading the Sample Program to the Processor
	1.10.1 Configuring the RSLinx Driver for the PC COM Port

	2 Configuring the MVI56E-MCMR Module
	2.1 Installing ProSoft Configuration Builder
	2.2 Using ProSoft Configuration Builder Software
	2.2.1 Upgrading from MVI56-MCMR in ProSoft Configuration Builder
	2.2.2 Setting Up the Project
	2.2.3 Setting Module Parameters
	Renaming an Object
	Configuring Module Parameters
	Creating Optional Comment Entries
	Printing a Configuration File

	2.3 Configuration as a Modbus Master
	2.3.1 Overview
	2.3.2 Backplane Configuration
	2.3.3 Port Configuration
	2.3.4 Master Command Configuration
	2.3.5 Other Modbus Addressing Schemes
	2.3.6 Master Command Examples
	Read Holding Registers 4x (Modbus Function Code 3)
	Read Input Registers 3xxxxx (Modbus Function Code 4)
	Read Coil Status 0x (Modbus Function Code 1)
	Read Input Status 1x (Modbus Function Code 2)
	Preset (Write) Single Coil 0x (Modbus Function Code 5)
	Write Multiple Coils 0xxx (Modbus Function Code 15)
	Preset (Write) Single Register 4x (Modbus Function Code 6)
	Preset (Write) Multiple Registers 4x (Modbus Function Code 16)

	2.3.7 Floating-Point Data Handling (Modbus Master)
	Read Floating-Point Data
	Read Multiple Floating-Point Registers
	Write Floats to Slave Device
	Read Floats with Single Modbus Register Address (Enron/Daniel Float)
	Write to Enron/Daniel Floats

	2.4 Configuration as a Modbus Slave
	2.4.1 Overview
	2.4.2 Configuration File Settings
	Modbus Memory Map
	Customizing the Memory Map

	2.4.3 Slave Configuration
	2.4.4 Floating-Point Data Handling (Modbus Slave)
	Enron/Daniel Float Configuration

	2.5 Ethernet Configuration
	2.6 Connecting Your PC to the Module's Ethernet Port
	2.6.1 Setting Up a Temporary IP Address

	2.7 Downloading the Project to the Module
	2.7.1 Using CIPconnect® to Connect to the Module
	Example 1: Local Rack Application
	Rack 1

	Example 2: Remote Rack Application
	Rack 1
	Rack 2

	2.7.2 Using RSWho to Connect to the Module

	3 Verify Communication
	3.1 Verify Master Communications
	3.1.1 Status Data Definition as a Master
	3.1.2 Command Error Codes
	Standard Modbus Protocol Errors
	Module Communication Error Codes
	Command List Entry Errors
	Transferring the Command Error List to the Processor

	3.1.3 MCM Status Data

	3.2 Verify Slave Communications
	3.2.1 Status Data Definition as a Slave

	4 Ladder Logic
	4.1 MVI56E-MCMR User Defined Data Types
	4.1.1 Module Status Data and Variables (MCMRModuleDef)
	Backplane Object (MCMRUTIL)
	Module Data Object (MCMRDATA)
	Status Object (MCMRSTATUS)
	MCMRPortStats
	MCMRBlockStats

	Command Control Data Object (MCMRCONTROL)
	MCMREventCmd
	MCMRCmdControl

	5 Diagnostics and Troubleshooting
	5.1 Ethernet LED Indicators
	5.1.1 Scrolling LED Status Indicators
	Initialization Messages
	Operation Messages

	5.1.2 Non-Scrolling LED Status Indicators

	5.2 Using the Diagnostics Menu in ProSoft Configuration Builder
	5.2.1 Connect to the Module’s Webpage
	5.2.2 The Diagnostics Menu
	5.2.3 Monitoring Backplane Information
	Backplane Configuration
	Backplane Status

	5.2.4 Monitoring Database Information
	ASCII
	Decimal
	Float
	Hexadecimal

	5.2.5 Monitoring General Information
	5.2.6 Monitoring Modbus Port Information
	Port Configuration
	Master Command List
	Master Command Status
	Slave Status List
	Port Status

	5.2.7 Data Analyzer
	Configuring the Data Analyzer
	Select Timing Interval
	Select the Communication Port to Analyze
	Select the Data Format

	Starting the Data Analyzer
	Stopping the Data Analyzer
	Data Analyzer Tips

	5.3 Reading Status Data from the Module
	5.3.1 Required Hardware
	5.3.2 Viewing the Error Status Table

	5.4 Communication Error Codes
	5.4.1 Clearing a Fault Condition
	5.4.2 Troubleshooting
	Processor Errors
	Module Errors

	6 Reference
	6.1 About the Modbus Protocol
	6.2 Specifications
	6.2.1 General Specifications
	6.2.2 Hardware Specifications
	6.2.3 General Specifications - Modbus Master/Slave
	6.2.4 Functional Specifications
	Modbus Master
	Modbus Slave

	6.3 Functional Overview
	6.3.1 Processor/Module Data Transfers
	Using Data Blocks

	6.3.2 Normal Data Transfer Blocks
	Read Block
	Read Block from Module to Processor

	Write Block
	Write Block from Processor to Module

	6.3.3 Special Function Blocks
	Module Status Block (9250)
	Block Response from Module to Processor

	Event Command Blocks (9901, 9911)
	Block Request from Processor to Module
	Block Response from Module to Processor

	Command Control Blocks (9902 or 9912)
	Block Request from Processor to Module
	Block Response from Module to Processor

	Command Error List Blocks (9950, 9951)
	Block Response from Module to Processor

	Slave Status Blocks (9960, 9961)
	Block Response from Module to Processor

	Warm Boot Block (9998)
	Block Request from Processor to Module

	Cold Boot Block (9999)
	Block Request from Processor to Module

	6.3.4 Master Driver
	Master Command List

	6.3.5 Slave Driver

	6.4 Cable Connections
	6.4.1 Ethernet Cable Specifications
	6.4.2 Ethernet Cable Configuration
	6.4.3 Ethernet Performance
	6.4.4 RS-232 Application Port(s)
	RS-232: Modem Connection (Hardware Handshaking Required)
	RS-232: Null Modem Connection (Hardware Handshaking)
	RS-232: Null Modem Connection (No Hardware Handshaking)

	6.4.5 RS-422
	6.4.6 RS-485 Application Port(s)
	RS-485 and RS-422 Tip

	6.4.7 DB9 to RJ45 Adaptor (Cable 14)

	6.5 MVI56E-MCMR Status Data Definition
	6.6 Modbus Protocol Specification
	6.6.1 Commands Supported by the Module
	6.6.2 Read Coil Status (Function Code 01)
	Query
	Response

	6.6.3 Read Input Status (Function Code 02)
	Query
	Response

	6.6.4 Read Holding Registers (Function Code 03)
	Query
	Response

	6.6.5 Read Input Registers (Function Code 04)
	Query
	Response

	6.6.6 Force Single Coil (Function Code 05)
	Query
	Response

	6.6.7 Preset Single Register (Function Code 06)
	Query
	Response

	6.6.8 Diagnostics (Function Code 08)
	Sub-function Codes Supported
	00 Return Query Data
	Example and State Diagram

	6.6.9 Force Multiple Coils (Function Code 15)
	Query
	Response

	6.6.10 Preset Multiple Registers (Function Code 16)
	Query
	Response

	6.6.11 Modbus Exception Responses
	Modbus Exception Codes

	6.7 Using the Optional Add-On Instruction Rung Import
	6.7.1 Before You Begin
	6.7.2 Overview
	6.7.3 Installing the Rung Import with Optional Add-On Instruction
	6.7.4 Reading the Ethernet Settings from the Module
	6.7.5 Writing the Ethernet Settings to the Module
	6.7.6 Reading the Clock Value from the Module
	6.7.7 Writing the Clock Value to the Module

	6.8 Using the Sample Program - RSLogix 5000 Version 15 and earlier
	6.8.1 Adding the Sample Ladder to an Existing Application
	6.8.2 Add the Module to the Project
	6.8.3 Copying the User Defined Data Types
	6.8.4 Copy Sample Controller Tags
	6.8.5 Add the Ladder Logic
	6.8.6 Ladder Logic - RSLogix Version 15 and Lower
	MSG_BLKS

	7 Support, Service & Warranty
	7.1 Installing ProSoft Configuration Builder
	7.2 Warranty Information

