

MVI56E-MCM
ControlLogix® Platform

Modbus Communication Module

 October 13, 2025

USER MANUAL

MVI56E-MCM ♦ ControlLogix® Platform Contents
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 2 of 205

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions, comments,
compliments or complaints about our products, documentation, or support, please write or call us.

ProSoft Technology, Inc.
+1 661-716-5100
+1 661-716-5101 (Fax)

www.prosoft-technology.com
ps.support@belden.com

MVI56E-MCM User Manual
For Public Use.

October 13, 2025

ProSoft Technology®, is a registered copyright of ProSoft Technology, Inc. All other brand or product names are or
may be trademarks of, and are used to identify products and services of, their respective owners.

Content Disclaimer

This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of
these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate
and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or
use thereof. Neither ProSoft Technology nor any of its affiliates or subsidiaries shall be responsible or liable for
misuse of the information contained herein. Information in this document including illustrations, specifications and
dimensions may contain technical inaccuracies or typographical errors. ProSoft Technology makes no warranty or
representation as to its accuracy and assumes no liability for and reserves the right to correct such inaccuracies or
errors at any time without notice. If you have any suggestions for improvements or amendments or have found errors
in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including
photocopying, without express written permission of ProSoft Technology. All pertinent state, regional, and local safety
regulations must be observed when installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform repairs to components. When
devices are used for applications with technical safety requirements, the relevant instructions must be followed.
Failure to use ProSoft Technology software or approved software with our hardware products may result in injury,
harm, or improper operating results. Failure to observe this information can result in injury or equipment damage.

© 2025 ProSoft Technology. All Rights Reserved.

Printed documentation is available for purchase. Contact ProSoft Technology for pricing and availability.

For professional users in the European Union

If you wish to discard electrical and electronic equipment (EEE), please contact your dealer or supplier
for further information.

Warning – Cancer and Reproductive Harm – www.P65Warnings.ca.gov

Agency Approvals and Certifications

Please visit our website: www.prosoft-technology.com

https://www.prosoft-technology.com/
mailto:ps.support@belden.com
http://www.p65warnings.ca.gov/
http://www.prosoft-technology.com/

MVI56E-MCM ♦ ControlLogix® Platform Contents
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 3 of 205

Open-Source Information

Open-Source Software used in the product
The product contains, among other things, Open-Source Software files, as defined below, developed by third parties
and licensed under an Open-Source Software license. These Open-Source Software files are protected by copyright.
Your right to use the Open-Source Software is governed by the relevant applicable Open-Source Software license
conditions. Your compliance with those license conditions will entitle you to use the Open-Source Software as
foreseen in the relevant license. In the event of conflicts between other ProSoft Technology, Inc. license conditions
applicable to the product and the Open-Source Software license conditions, the Open-Source Software conditions
shall prevail. The Open-Source Software is provided royalty-free (i.e. no fees are charged for exercising the licensed
rights). Open-Source Software contained in this product and the respective Open-Source Software licenses are
stated in the module webpage, in the link Open-Source.
If Open-Source Software contained in this product is licensed under GNU General Public License (GPL), GNU Lesser
General Public License (LGPL), Mozilla Public License (MPL) or any other Open-Source Software license, which
requires that source code is to be made available and such source code is not already delivered together with the
product, you can order the corresponding source code of the Open-Source Software from ProSoft Technology, Inc. -
against payment of the shipping and handling charges - for a period of at least 3 years since purchase of the product.
Please send your specific request, within 3 years of the purchase date of this product, together with the name and
serial number of the product found on the product label to:

ProSoft Technology, Inc.
Director of Engineering
9201 Camino Media, Suite 200
Bakersfield, CA 93311
USA

Warranty regarding further use of the Open-Source Software
ProSoft Technology, Inc. provides no warranty for the Open-Source Software contained in this product, if such Open-
Source Software is used in any manner other than intended by ProSoft Technology, Inc. The licenses listed define
the warranty, if any, from the authors or licensors of the Open-Source Software. ProSoft Technology, Inc. specifically
disclaims any warranty for defects caused by altering any Open-Source Software or the product’s configuration. Any
warranty claims against ProSoft Technology, Inc. in the event that the Open-Source Software contained in this
product infringes the intellectual property rights of a third party are excluded. The following disclaimer applies to the
GPL and LGPL components in relation to the rights holders:
“This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License and the GNU Lesser General Public License for more details.”
For the remaining Open-Source components, the liability exclusions of the rights holders in the respective license
texts apply. Technical support, if any, will only be provided for unmodified software.

MVI56E-MCM ♦ ControlLogix® Platform Contents
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 4 of 205

Contents

Your Feedback Please .. 2
Content Disclaimer .. 2

1 Start Here 8

1.1 System Requirements ... 8
1.2 Deployment Checklist .. 9
1.3 Package Contents ... 10
1.4 Setting Jumpers .. 11
1.5 Installing the Module in the Rack .. 12
1.6 Creating a New RSLogix 5000 Project .. 13

1.6.1 Before You Import the Add-On Instruction .. 14
1.6.2 Creating the Module .. 15
1.6.3 Import the Ladder Rung .. 18
1.6.4 Adding Multiple Modules (Optional) .. 21
1.6.5 Adjust the Input and Output Array Sizes (Optional) .. 26

1.7 Connecting Your PC to the ControlLogix Processor ... 28
1.8 Downloading the Sample Program to the Processor .. 29

1.8.1 Configuring the RSLinx Driver for the PC COM Port .. 30

2 Configuration as a Modbus Master 32

2.1 Overview.. 32
2.2 ModDef Settings .. 33

2.2.1 Port Configuration ... 35
2.2.2 Master Command Configuration ... 38
2.2.3 Other Modbus Addressing Schemes .. 41

2.3 Master Command Examples ... 42
2.3.1 Read Holding Registers 4x (Modbus Function Code 3) .. 42
2.3.2 Read Input Registers 3x (Modbus Function Code 4) .. 43
2.3.3 Read Coil Status 0x (Modbus Function Code 1) ... 44
2.3.4 Read Input Status 1x (Modbus Function Code 2) ... 45
2.3.5 Force (Write) Single Coil 0x (Modbus Function Code 5) .. 46
2.3.6 Force (Write) Multiple Coils 0x (Modbus Function Code 15) 47
2.3.7 Preset (Write) Single Register 4x (Modbus Function Code 6) 48
2.3.8 Preset (Write) Multiple Registers 4x (Modbus Function Code 16) 49

2.4 Floating-Point Data Handling (Modbus Master) .. 50
2.4.1 Read Floating-Point Data .. 50
2.4.2 Read Multiple Floating-Point Registers ... 52
2.4.3 Write Floats to Slave Device ... 53
2.4.4 Read Floats with Single Modbus Register Address (Enron/Daniel Float) 54
2.4.5 Write to Enron/Daniel Floats ... 55

2.5 Command Control and Event Command .. 56
2.5.1 Command Control ... 57
2.5.2 Event Command .. 58

3 Configuration as a Modbus Slave 60

3.1 Overview.. 60
3.2 ModDef Settings .. 61

3.2.1 Modbus Memory Map .. 63

MVI56E-MCM ♦ ControlLogix® Platform Contents
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 5 of 205

3.2.2 Customizing the Memory Map .. 64
3.3 Slave Configuration ... 66
3.4 Floating-Point Data Handling (Modbus Slave) .. 66

3.4.1 Enron/Daniel Float Configuration .. 67
3.5 Read and Write Same Modbus Address (Pass Through) 69

4 Verify Communication 70

4.1 Verifying Master Communications .. 70
4.1.1 MVI56E-MCM Status Data Definition as a Master .. 70
4.1.2 Command Error Codes ... 72
4.1.3 MCM Status Data .. 76

4.2 Verify Slave Communications ... 77
4.2.1 MVI56E-MCM Status Data Definition as a Slave .. 77

5 Diagnostics and Troubleshooting 79

5.1 Ethernet LED Indicators .. 79
5.1.1 Scrolling LED Status Indicators ... 79
5.1.2 Non-Scrolling LED Status Indicators ... 80

5.2 Clearing a Fault Condition ... 81
5.3 Troubleshooting the LEDs ... 81

5.3.1 Processor Errors ... 81
5.3.2 Module Errors .. 81

5.4 Setting Up ProSoft Configuration Builder .. 82
5.4.1 Installing ProSoft Configuration Builder .. 82
5.4.2 Setting Up the Project ... 83
5.4.3 Assigning an IP Address in the Project ... 85

5.5 Connecting Your PC to the Module ... 86
5.5.1 Download the IP Address through CIPconnect ... 86
5.5.2 Using RSWho to Connect to the Module .. 96
5.5.3 Connecting Your PC to the Module's Ethernet Port .. 97

5.6 Downloading the Project to the Module .. 101
5.7 Using the Diagnostics Menu in ProSoft Configuration Builder 103

5.7.1 The Diagnostics Menu ... 106
5.7.2 Monitoring Backplane Information ... 106
5.7.3 Monitoring Database Information .. 108
5.7.4 Monitoring General Information ... 109
5.7.5 Monitoring Modbus Port Information ... 109
5.7.6 Data Analyzer .. 110

5.8 Reading Status Data from the Module .. 114
5.8.1 Viewing the Error Status Table ... 114

5.9 Configuration Error Codes... 115
5.10 Connect to the Module’s Webpage ... 117

6 Reference 118

6.1 Product Specifications ... 118
6.1.1 General Specifications .. 118
6.1.2 General Specifications - Modbus Master/Slave .. 119
6.1.3 Functional Specifications... 119
6.1.4 Hardware Specifications.. 120

6.2 Functional Overview .. 121
6.2.1 About the Modbus Protocol ... 121

MVI56E-MCM ♦ ControlLogix® Platform Contents
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 6 of 205

6.2.2 Backplane Data Transfer... 121
6.2.3 Normal Data Transfer .. 124
6.2.4 Special Function Blocks .. 126
6.2.5 Data Flow Between MVI56E-MCM and ControlLogix Processor 140

6.3 Cable Connections .. 144
6.3.1 Ethernet Cable Specifications ... 144
6.3.2 Ethernet Cable Configuration .. 145
6.3.3 Ethernet Performance ... 145
6.3.4 RS-232 Application Port(s) .. 145
6.3.5 RS-422 .. 148
6.3.6 RS-485 Application Port(s) .. 148
6.3.7 DB9 to RJ45 Adaptor (Cable 14) .. 149

6.4 MVI56E-MCM Database Definition ... 150
6.5 MVI56E-MCM Configuration Data ... 151

6.5.1 Backplane Setup ... 151
6.5.2 Port 1 Setup .. 152
6.5.3 Port 2 Setup .. 155
6.5.4 Port 1 Commands ... 158
6.5.5 Port 2 Commands ... 158
6.5.6 Miscellaneous Status .. 159
6.5.7 Command Control ... 160

6.6 MVI56E-MCM Status Data Definition .. 161
6.7 MVI56E-MCM User Defined Data Types .. 163

6.7.1 MCMModuleDef .. 163
6.7.2 MCMCONFIG .. 163
6.7.3 MCMDATA .. 166
6.7.4 MCMSTATUS .. 166
6.7.5 MCMCONTROL .. 168
6.7.6 MCMUTIL .. 170

6.8 Modbus Protocol Specification .. 171
6.8.1 Commands Supported by the Module ... 171
6.8.2 Read Coil Status (Function Code 01) ... 172
6.8.3 Read Input Status (Function Code 02) .. 173
6.8.4 Read Holding Registers (Function Code 03) .. 174
6.8.5 Read Input Registers (Function Code 04) ... 175
6.8.6 Force Single Coil (Function Code 05) ... 176
6.8.7 Preset Single Register (Function Code 06) ... 177
6.8.8 Diagnostics (Function Code 08) .. 178
6.8.9 Force Multiple Coils (Function Code 15) ... 180
6.8.10 Preset Multiple Registers (Function Code 16) .. 181
6.8.11 Modbus Exception Responses .. 182

6.9 Using the Optional Add-On Instruction .. 184
6.9.1 Before You Begin .. 184
6.9.2 Overview.. 184
6.9.3 Importing the Utility Add-On Instruction .. 185
6.9.4 Reading the Ethernet Settings from the Module ... 189
6.9.5 Writing the Ethernet Settings to the Module.. 190
6.9.6 Reading the Clock Value from the Module .. 191
6.9.7 Writing the Clock Value to the Module .. 192

6.10 Using the Sample Program - RSLogix 5000 Version 15 and earlier 193
6.10.1 Using the Sample Program in a New Application ... 193
6.10.2 Using the Sample Program in an Existing Application .. 198

MVI56E-MCM ♦ ControlLogix® Platform Contents
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 7 of 205

7 Support, Service & Warranty 205

7.1 Contacting Technical Support ... 205
7.2 Warranty Information ... 205

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 8 of 205

1 Start Here

To get the most benefit from this User Manual, you should have the following skills:

• Rockwell Automation® RSLogix™ software: launch the program, configure ladder
logic, and transfer the ladder logic to the processor

• Microsoft Windows®: install and launch programs, execute menu commands,
navigate dialog boxes, and enter data

• Hardware installation and wiring: install the module, and safely connect Modbus
and ControlLogix devices to a power source and to the MVI56E-MCM module’s
application port(s)

1.1 System Requirements

The MVI56E-MCM module requires the following minimum hardware and software
components:

• Rockwell Automation ControlLogix® processor (firmware version 10 or higher) with
compatible limited voltage power supply and one free slot in the rack for the
MVI56E-MCM module. The module requires 800mA of available 5 VDC and 3 mA of

available 24 VDC power.

• Rockwell Automation RSLogix 5000 programming software

o Version 16 or higher required for Add-On Instruction
o Version 15 or lower must use Sample Ladder, available from

www.prosoft-technology.com

• Rockwell Automation RSLinx® communication software version 2.51 or higher

• ProSoft Configuration Builder software (included)

Note: The Hardware and Operating System requirements in this list are the minimum recommended to
install and run software provided by ProSoft Technology®. Other third party applications may have different
minimum requirements. Refer to the documentation for any third party applications for system requirements.

Note: You can install the module in a local or remote rack. For remote rack installation, the module requires
EtherNet/IP or ControlNet communication with the processor.

https://www.prosoft-technology.com/

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 9 of 205

1.2 Deployment Checklist

Before you begin configuring the module, consider the following questions. Your
answers will help you determine the scope of your project, and the configuration
requirements for a successful deployment.

1 ____________ Are you creating a new application or integrating the module into an
existing application?

Most applications can use the Sample Add-On Instruction or Sample Ladder Logic
without any edits to the Sample Program.

2 ____________ Which slot number in the chassis will the MVI56E-MCM module
occupy?

For communication to occur, you must enter the correct slot number in the sample
program.

3 ____________ Are RSLogix 5000 and RSLinx software installed?

RSLogix and RSLinx are required to communicate to the ControlLogix processor
(1756-L1, L55, L61 & L63). Sample Ladder programs are available for different
versions of RSLogix 5000.

4 ____________ How many words of data do you need to transfer in your application
(from ControlLogix to Module / to ControlLogix from Module)?

The MVI56E-MCM module can transfer a maximum of 10,000 (16-bit) registers to
and from the ControlLogix processor. The Sample Ladder transfers 600 words to the
ControlLogix processor (into the Read Data array), and obtains 600 words from the
ControlLogix processor (from the Write Data array)

5 ____________ Will you be using the module as a Modbus Master or Modbus Slave?
Will you be transferring data using Modbus RTU or Modbus ASCII?

Modbus is a Master/Slave network. Only one Master is allowed on the serial
communications line (max 32 devices/RS485). The Master is responsible for polling
data from the Slaves on the network.

6 ____________ For a Modbus Master, what Slave Device Addresses and Modbus
Data Addresses do you need to exchange data with on the Modbus network?

For a Modbus Master, you must know the Slave Device Address number of each
Slave device to poll. You also need the Modbus address (for example, coil 00001,
register 40001) of the data to read from or write to each Slave device.

7 ____________ For a Modbus Slave, how many words or bits of data do you need to
send to the Master device?

The MVI56E-MCM module can send data to a Modbus Master as 0x coil data, 1x
input coil data, 3x input registers, and 4x holding registers. The sample program
transfers 600 (16-bit) words or 9600 bits to the ControlLogix processor, and 600 (16-
bit) words or 9600 bits from the ControlLogix processor.

8 Serial Communication Parameters for the Modbus network:

____________ Baud rate?
____________ Data bits?
____________ Parity?
____________ Stop bits?
Required for both Master and Slave configurations.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 10 of 205

9 ____________ Wiring type to use (RS232, 422 or 485). Configured by Setting
Jumpers.

Required for proper implementation of the module in Master and Slave
configurations.

Note: If you are using RSLogix 5000 version 16 or newer, refer to Before You Import the Add-On Instruction
(page 14).
For RSLogix 5000 version 15 and earlier, refer to Using the Sample Program - RSLogix 5000 Version 15
and earlier (page 192).

Most applications can use the Sample Ladder Logic without modification.

1.3 Package Contents

The following components are included with your MVI56E-MCM module, and are all
required for installation and configuration.

Important: Before beginning the installation, please verify that all of the following items are present.

Qty. Part Name Part Number Part Description

1 MVI56E-MCM Module MVI56E-MCM Modbus Communication Module

2 Cable Cable #14, RJ45 to
DB9 Male Adapter
cable

For DB9 Connection to Module’s
Application Serial Port

2 Adapter 1454-9F Two Adapters, DB9 Female to Screw
Terminal. For RS422 or RS485
Connections to Port 1 and 2 of the Module

If any of these components are missing, please contact ProSoft Technology Support for
replacement parts.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 11 of 205

1.4 Setting Jumpers

There are three jumpers located at the bottom of the module. The first two jumpers (P1
and P2) set the serial communication mode: RS-232, RS-422 or RS-485.

The following illustration shows the MVI56E-MCM jumper configuration, with the Setup
Jumper OFF.

The Setup Jumper acts as "write protection" for the module’s firmware. In "write
protected" mode, the Setup pins are not connected, and the module’s firmware cannot
be overwritten. The module is shipped with the Setup jumper OFF. Do not jumper the
Setup pins together unless you are directed to do so by ProSoft Technical Support (or
you want to update the module firmware).

The following illustration shows the jumper configuration with the Setup Jumper OFF.

Note: If you are installing the module in a remote rack, you may prefer to leave the Setup pins jumpered.
That way, you can update the module’s firmware without requiring physical access to the module.

Security considerations:

Leaving the Setup pin jumpered leaves the module open to unexpected firmware updates.

You should consider segmenting the data flow for security reasons. Per IEC 62443-1-1, you should align
with IEC 62443 and implement segmentation of the control system. Relevant capabilities are firewalls,
unidirectional communication, DMZ. Oil and Gas customers should also see DNVGL-RP-G108 for guidance
on partitioning.

You should practice security by design, per IEC 62443-4-1, including layers of security and detection. The
module relies on overall network security design, as it is only one component of what should be a defined
zone or subnet.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 12 of 205

1.5 Installing the Module in the Rack

Make sure your ControlLogix processor and power supply are installed and configured,
before installing the MVI56E-MCM module. Refer to your Rockwell Automation product
documentation for installation instructions.

Warning: You must follow all safety instructions when installing this or any other electronic devices. Failure
to follow safety procedures could result in damage to hardware or data, or even serious injury or death to
personnel. Refer to the documentation for each device you plan to connect to verify that suitable safety
procedures are in place before installing or servicing the device.

After you have checked the placement of the jumpers, insert the MVI56E-MCM into the
ControlLogix chassis. Use the same technique recommended by Rockwell Automation
to remove and install ControlLogix modules.

You can install or remove ControlLogix system components while chassis power is
applied and the system is operating. However, please note the following warning.

Warning: When you insert or remove the module while backplane power is on, an electrical arc can occur.
An electrical arc can cause personal injury or property damage by sending an erroneous signal to the
system’s actuators. This can cause unintended machine motion or loss of process control. Electrical arcs
may also cause an explosion when they happen in a hazardous environment. Verify that power is removed
or the area is non-hazardous before proceeding. Repeated electrical arcing causes excessive wear to
contacts on both the module and its mating connector. Worn contacts may create electrical resistance that
can affect module operation.

1 Align the module with the top and bottom guides, and then slide it into the rack until
the module is firmly against the backplane connector.

2 With a firm, steady push, snap the module into place.
3 Check that the holding clips on the top and bottom of the module are securely in the

locking holes of the rack.
4 Make a note of the slot location. You must identify the slot in which the module is

installed in order for the sample program to work correctly. Slot numbers are
identified on the green circuit board (backplane) of the ControlLogix rack.

5 Turn power ON.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 13 of 205

Note: If the module is improperly inserted, the system may stop working or may behave unpredictably.

Note: When using the MVI56E-MCMXT, you must use the 1756-A5XT or 1756-A7LXT chassis. In these
chassis, modules are spaced further apart than in standard ControlLogix chassis. Blank spacers are
inserted between active modules.

1.6 Creating a New RSLogix 5000 Project

1 Open the FILE menu, and then choose NEW.

2 Select your ControlLogix controller model.
3 Select the REVISION of your controller. Depending on the revision, there may be

some small differences in the appearance of dialog boxes from the ones shown in
this Guide.

4 Enter a name for your controller, such as My_Controller.
5 Select your ControlLogix chassis type.
6 Select SLOT 0 for the controller.
7 Click OK

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 14 of 205

1.6.1 Before You Import the Add-On Instruction

Note: This section only applies if your processor is using RSLogix 5000 version 16 or higher. If you have an
earlier version, please see Using the Sample Program - RSLogix 5000 Version 15 and earlier (page 192).

Two Add-On Instructions are provided for the MVI56E-MCM module. The first is required
for setting up the module; the second is optional.

Download them from www.prosoft-technology.com. Save them to a convenient location
in your PC, such as Desktop or My Documents.

File Name Description

MVI56EMCM_AddOn_Rung_v2_8.L5X. A
newer version may be available at
www.prosoft-technology.com

L5X file containing Add-On Instruction, user defined
data types, controller tags and ladder logic required
to configure the MVI56E-MCM module

MVI56(E)MCM_Optional_AddOn_Rung_v1_2
.L5X. A newer version may be available at
www.prosoft-technology.com

Optional L5X file containing additional Add-On
Instruction with logic for changing Ethernet
configuration and clock settings.

About the Optional Add-On Instruction

The Optional Add-On Instruction performs the following tasks:

• Read/Write Ethernet Configuration

Allows the processor to read or write the module IP address, subnet mask, and
network gateway IP address.

• Read/Write Module Clock Value

Allows the processor to read and write the module clock settings. The module's free-
running clock also stores the last time that the Ethernet configuration was changed
or the last time the module was restarted or rebooted. The date and time of the last
change or restart is displayed on the scrolling LED during module power-up/start-up
sequence.

For more information, see Using the Optional Add-On Instruction (page 183).

Note: You can also set the date and time from the module's Connect to the Module’s Web Page (page 116).

Important: The Optional Add-On Instruction supports only the two features listed above. You must use the
regular MVI56E-MCM Add-On Instruction for all other features including backplane transfer and Modbus
data communication.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 15 of 205

1.6.2 Creating the Module

1 Add the MVI56E-MCM module to the project.

2 In the CONTROLLER ORGANIZATION window, select I/O CONFIGURATION and click the
right mouse button to open a shortcut menu. On the shortcut menu, choose NEW

MODULE...

3 This action opens the SELECT MODULE dialog box. Enter generic in the text box and
select the GENERIC 1756 MODULE. If you're using a controller revision of 15 or
less, expand OTHER in the SELECT MODULE dialog box, and then select the
GENERIC 1756 MODULE.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 16 of 205

4 Click CREATE. This action opens the NEW MODULE dialog box.

5 In the NEW MODULE dialog box, enter the following values.

Parameter Value

Name MCM

Description Enter a description for the module. Example: Modbus
Communication Module

Comm Format Select DATA-INT

Slot Enter the slot number in the rack where the MVI56E-MCM
module is located

Input Assembly Instance 1

Input Size 250

Output Assembly Instance 2

Output Size 248

Configuration Assembly Instance 4

Configuration Size 0

Important: You must select the COMM FORMAT as DATA - INT in the dialog box, otherwise the module
will not communicate over the backplane of the ControlLogix rack.

6 Click OK to continue.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 17 of 205

7 Edit the Module Properties.

8 Select the REQUESTED PACKET INTERVAl value for scanning the I/O on the module.
This value represents the minimum frequency at which the module will handle
scheduled events. This value should not be set to less than 1 millisecond. The
default value is 5 milliseconds. Values between 1 and 10 milliseconds should work
with most applications.

9 Click OK to save the module and close the dialog box. Notice that the module now
appears in the CONTROLLER ORGANIZATION window.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 18 of 205

1.6.3 Import the Ladder Rung

1 In the CONTROLLER ORGANIZATION window, expand the TASKS folder and
subfolders until you reach the MAINPROGRAM folder.

2 In the MAINPROGRAM folder, double-click to open the MAINROUTINE ladder.
3 Select an empty rung in the routine, and then click the right mouse button to

open a shortcut menu. On the shortcut menu, choose IMPORT RUNGS…

4 Navigate to the location on your PC where you Before You Begin (page 14) the
Add-On Instruction (for example, My Documents or Desktop). Select the
MVI56EMCM_ADDON_RUNG_V2.8.L5X file.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 19 of 205

5 This action opens the IMPORT CONFIGURATION dialog box. Click TAGS under
MAINROUTINE to show the controller tags that will be created. Note that if you are
using a controller revision number of 16 or less, the IMPORT CONFIGURATION
dialog box does not show the IMPORT CONTENT tree.

6 If you are using the module in a different slot (or remote rack), edit the
connection input and output variables that define the path to the module. Edit the
text in the FINAL NAME column (NAME column for controller revision 16 or less).
For example, if your module is located in slot 3, change Local:1:I in the above
picture to Local:3:I. Do the same for Local:1:O. If your module is located in Slot 1
of the local rack, this step is not required.

7 Click OK to confirm the import. RSLogix will indicate that the import is in
progress:

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 20 of 205

8 When the import is completed, the new rung with the Add-On Instruction will be
visible as shown in the following illustration.

9 The procedure has also imported new User Defined Data Types, Controller Tags,
and the Add-On Instruction for your project.

10 Save the application and then download the sample ladder logic into the
processor.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 21 of 205

1.6.4 Adding Multiple Modules (Optional)

Important: If your application requires more than one MVI56E-MCM module in the same project, follow the
steps below.

1 In the I/O CONFIGURATION folder, click the right mouse button to open a shortcut
menu, and then choose NEW MODULE.

2 Select 1756-MODULE. If you're using a controller revision of 16 or less, expand
OTHER in the SELECT MODULE dialog box, and then select the 1756-MODULE.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 22 of 205

3 Fill the module properties as follows:

Parameter Value

Name Enter a module identification string. Example: MCM_2.

Description Enter a description for the module. Example: ProSoft Modbus
Communication Module.

Comm Format Select DATA-INT.

Slot Enter the slot number in the rack where the MVI56E-MCM
module is located.

Input Assembly Instance 1

Input Size 250

Output Assembly Instance 2

Output Size 248

Configuration Assembly Instance 4

Configuration Size 0

4 Click OK to confirm. The new module is now visible:

5 Expand the TASKS folder, and then expand the MAINTASK folder.
6 In the MAINPROGRAM folder, double-click to open the MAINROUTINE ladder.
7 Select an empty rung in the routine, and then click the right mouse button to open a

shortcut menu. On the shortcut menu, choose IMPORT RUNGS…

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 23 of 205

8 Select the MVI56EMCM_ADDON_RUNG_V2_8.L5X file, and then click IMPORT.

9 This action opens the IMPORT CONFIGURATION window. Click TAGS under
MAINROUTINE to show the tags that will be imported.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 24 of 205

10 Associate the I/O connection variables to the correct module. The default values are
Local:1:I and Local:1:O so you may have to edit the FINAL NAME field to change the
values. You can also click the drop-down arrow to select the correct name.

11 Change the default tags MCM and AOI56MCM to avoid conflict with existing tags. In
this step, append the string "_2", as shown in the following illustration.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 25 of 205

12 Click OK to confirm.

The setup procedure is now complete. Save the project and download the application to
your ControlLogix processor.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 26 of 205

1.6.5 Adjust the Input and Output Array Sizes (Optional)

The module internal database is divided into two user-configurable areas:

• Read Data

• Write Data

The Read Data area is moved from the module to the processor, while the Write Data
area is moved from the processor to the module. You can configure the start register
and size of each area. The size of each area you configure must match the Add-On
Instruction controller tag array sizes for the READDATA and WRITEDATA arrays.

The MVI56E-MCM sample program is configured for 600 registers of READDATA and
600 registers of WRITEDATA, which is sufficient for most application. This topic describes
how to configure user data for applications requiring more than 600 registers of
ReadData and WriteData. In this example, we will expand both the Read and Write Data
sizes to 1000.

Caution: When you change the array size, RSLogix may reset the MCM tag values to zero. To avoid data
loss, be sure to save your settings before continuing.

1 In the CONTROLLER ORGANIZATION window, expand the DATA TYPES and USER-
DEFINED folders, and then double-click MCMDATA. This action opens an edit
window for the MCMDATA data type.

2 In the edit window, change the value of the READDATA array from INT[600] to
INT[1000] as shown, and then click APPLY.

Note: If RSLogix resets your data values, refer to the backup copy of your program to re-enter your
configuration parameters.

3 Navigate to CONTROLLER TAGS and double click to open an edit window. Click the
MONITOR TAGS tab at the bottom of the edit window.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 27 of 205

4 Click [+] to expand the MCM.CONFIG.MODDEF section, and then change the
READREGCNT parameter from 600 to 1000.

5 Save and download the sample program to the processor.
6 Go Online with the ControlLogix processor, and then toggle the

MCM.CONTROL.WARMBOOT bit to download the configuration to the MVI56E-MCM
module.

Note: Any changes made to the MCM.CONFIG or WriteData arrays must be downloaded to the MVI56E-
MCM module. The use of the MCM.CONTROL.WarmBoot or MCM.CONTROL.ColdBoot bit will cause the
MVI56E-MCM module to re- read the configuration from the ControlLogix processor.

To modify the WRITEDATA array, follow the steps in this topic, but substitute WRITEDATA

for ReadData throughout. Also, make sure that the READDATA and WRITEDATA arrays do
not overlap in the module memory. For example, if your application requires 2000 words
of WriteData starting at register 0, then your MCM.CONFIG.MODDEF.READSTARTREG
must be set to a value of 2000 or greater.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 28 of 205

1.7 Connecting Your PC to the ControlLogix Processor

There are several ways to establish communication between your PC and the
ControlLogix processor. The following steps show how to establish communication
through the serial interface.

Note: It is not mandatory to use the processor's serial interface. You may access the processor through a
network interface available on your system. Refer to your Rockwell Automation documentation for
information on other connection methods

1 Connect the right-angle connector end of the cable to your controller at the
communications port.

2 Connect the straight connector end of the cable to the serial port on your computer.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 29 of 205

1.8 Downloading the Sample Program to the Processor

Note: The key switch on the front of the ControlLogix processor must be in the REM or PROG position.

1 If you are not already online with the processor, in RSLogix 5000 open the
Communications menu, and then choose DOWNLOAD. RSLogix 5000 will establish
communication with the processor. You do not have to download through the
processor's serial port, as shown here. You may download through any available
network connection.

2 When communication is established, RSLogix 5000 will open a confirmation dialog
box. Click the DOWNLOAD button to transfer the sample program to the processor.

3 RSLogix 5000 will compile the program and transfer it to the processor. This process
may take a few minutes.

4 When the download is complete, RSLogix 5000 will open another confirmation dialog
box. If the key switch is in the REM position, click OK to switch the processor from
PROGRAM mode to RUN mode.

Note: If you receive an error message during these steps, refer to your RSLogix documentation to interpret
and correct the error.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 30 of 205

1.8.1 Configuring the RSLinx Driver for the PC COM Port

When trying to connect serially, if RSLogix is unable to establish communication with the
processor, follow these steps.

1 Open RSLinx.
2 Open the COMMUNICATIONS menu, and click CONFIGURE DRIVERS.

This action opens the Configure Drivers dialog box.

Note: If the list of configured drivers is blank, you must first choose and configure a driver from the
Available Driver Types list. The recommended driver type to choose for serial communication with the
processor is RS-232 DF1 Devices.

MVI56E-MCM ♦ ControlLogix® Platform Start Here
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 31 of 205

3 Click to select the driver, and then click CONFIGURE. This action opens the Configure
RS-232 DF1 Devices dialog box.

4 Click the AUTO-CONFIGURE button. RSLinx will attempt to configure your serial port to
work with the selected driver.

5 When you see the message Auto Configuration Successful, click the OK button to
dismiss the dialog box.

Note: If the auto-configuration procedure fails, verify that the cables are connected correctly between the
processor and the serial port on your computer, and then try again. If you are still unable to auto-configure
the port, refer to your RSLinx documentation for further troubleshooting steps.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 32 of 205

2 Configuration as a Modbus Master

2.1 Overview

This section describes how to configure the module as a MODBUS MASTER device. The
Master is the only device on a Modbus network that can initiate communications. A
Master device issues a request message, and then waits for the Slave to respond. When
the Slave responds, or when a timeout has occurred, the Modbus Master will then
execute the next command in the list.

The following RSLogix controller tags contain the Modbus Master configuration. You
must configure all three sets of controller tags.

1 The MODDEF controller tags set up the backplane communication between the
MVI56E-MCM module and the ControlLogix processor. These settings include
register addresses for ReadData and WriteData. You can configure up to 10,000
data registers in the module to exchange data with the ControlLogix processor.

2 The PORT1 and PORT 2 controller tags configure the Modbus application serial port.
This set of controller tags configures serial communication parameters such as baud
rate, data bits, and stop bits. They also contain settings to configure the port as a
Modbus Master or a Modbus Slave.

3 The PORT1MASTERCOMMAND and PORT2MASTERCOMMAND controller tags define a
polling table (command list) for the Modbus Master. This set of tags contains the
addresses for devices on the network, the types of data (Modbus Function Codes) to
read and write with those devices, and the location to store the data within the
module’s 10,000 data registers.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 33 of 205

2.2 ModDef Settings

The MCM.CONFIG.MODDEF tag defines the 10,000 data registers to use for read and
write data within the MVI56E-MCM module. You will use these data read and write
locations in the IntAddress tag within each Master Command Configuration (page 37).
The following illustration shows the values from the sample program.

The WRITESTARTREG tag determines the starting register location for the WRITEDATA[0

to 599] array. The WRITEREGCNT tag determines how many of the 10,000 registers to
use to send data to the module. The sample ladder file uses 600 registers for write data,
labeled MCM.WRITEDATA[0 to 599].

Label Description

WriteStartReg Specifies where in the 10,000 register module memory to place data
sent from the WriteData tags in the ControlLogix processor.

WriteRegCnt Specifies how many registers of data the MVI56E-MCM module will
request from the ControlLogix processor.

ReadStartReg Specifies which registers in the module’s read data area to send to the
ReadData tags in the ControlLogix processor.

ReadRegCnt Sets how many registers of data the MVI56E-MCM module will send to
the ControlLogix processor.

BPFail Sets the consecutive number of backplane failures that will cause the
module to stop communications on the Modbus network. Typically used
when the module is configured as a Slave.

ErrStatPtr Also used mainly when the module is configured as a Slave. This
parameter places the STATUS data into the database of the module.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 34 of 205

The sample configuration values configure the module database to store WRITEDATA[0

to 599] in registers 0 to 599, and READDATA[0 TO 599] in registers 1000 to 1599, as
shown in the following illustration.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 35 of 205

2.2.1 Port Configuration

The MCM.CONFIG.PORTX controller tags are used when the module is configured as a
Modbus Master device. Port 1 and Port 2 each have their own set of parameters to
configure.

Note: Any changes made within the MCM.CONFIG array must be downloaded to the MVI56E-MCM module
by setting the WARMBOOT or COLDBOOT bit, or cycling power to the module.

Any parameters not mentioned in this section are not used when the module is
configured as a Modbus Master.

Verify that you are in MONITOR TAGS mode. Then use the scroll bar at the bottom of the
window to view a description of each parameter. The following table uses that
information.

Parameter Description

Enabled 1 = Enable port, 0 = Disable port

Type 0 = Master
1 = Slave
2 = Slave with unformatted pass-through
3 = Slave with formatted pass-through, with data swapping
4 = Slave with formatted pass-through, with no data swapping

Protocol 0 = Modbus RTU mode
1 = Modbus ASCII mode

Baud rate Sets the baud rate for the port. Valid values for this field are 110, 150,
300, 600, 1200, 2400, 4800, 9600, 19200, 384 (for 38,400 baud), 576
(for 57,600 baud) and 115 or 1152 (for 115,200 baud)

Parity 0 = None
1 = Odd
2 = Even

DataBits 8 = Modbus RTU mode
7 or 8 = Modbus ASCII mode

StopBits Valid values are 1 or 2.

RTS On 0 to 65535 milliseconds to delay after RTS line is asserted on the port
before data message transmission begins. This delay can be used to
allow for radio keying or modem dialing before data transmission
begins.

RTS Off 0 to 65535 milliseconds to delay after data message is complete
before RTS line is dropped on the port.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 36 of 205

Parameter Description

Use CTS Line No or Yes
This parameter is used to enable or disable hardware handshaking.
The default setting is No hardware handshaking, CTS Line not used.
Set to No if the connected devices do not need hardware
handshaking. Set to Yes if the device(s) connected to the port require
hardware handshaking (most modern devices do not) If you set this
parameter to Yes, be sure to pay attention to the pinout and wiring
requirements to be sure the hardware handshaking signal lines are
properly connected; otherwise communication will fail.

CmdCount 0 to 325 commands
This parameter sets the number of commands to execute from the
command list. Setting to zero (0) will disable all command polling.
Setting to a value less than the number of configured commands will
limit polling to the number of commands specified by this parameter.
Setting to a value greater than the number of configured commands
will cause invalid command errors to be reported for the unconfigured
commands.

Minimum Command Delay 0 to 65535 milliseconds
The amount of delay in milliseconds to be inserted after receiving a
Slave response or encountering a response timeout before retrying
the command or sending the next command on the list. Use this
parameter to slow down overall polling speed and spread out
commands on networks with Slaves that require additional gaps
between messages.

If set to 0, this parameter is set to a default value based upon the
baud rate settings:

Baud Rate Default Minimum Command Delay (ms)

110 513

150 377

300 190

1200 50

2400 27

4800 15

9600 9

19200 6

57600 4

115200 4

921600 4

CmdErrPtr Internal DB location to place command error list
Each command will reserve one word for the command error code for
that command. See Verify Communication (page 70). CMDERRPTR

value should be within the range of the READDATA array. See
Backplane Configuration (page 106).

Error Delay Counter This parameter specifies the number of poll attempts to be skipped
before trying to re-establish communications with a slave that has
failed to respond to a command within the time limit set by the
Response Timeout parameter. After the slave fails to respond, the
master will skip sending commands that should have been sent to the
slave until the number of skipped commands matches the value
entered in this parameter. This creates a sort of slow poll mode for
slaves that are experiencing communication problems.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 37 of 205

Parameter Description

RespTO 0 to 65535 milliseconds response timeout for command before it will
either reissue the command, if RETRYCOUNT > 0.
If the RetryCount =0 or if the designated number of retries have been
accomplished, then the Master will move on to the next command in
the list.

RetryCount Number of times to retry a failed command request before moving to
the next command on the list.

Note: To use up to 325 commands, your MVI56E-MCM module needs to have firmware version 3.01 or
higher, and your MVI56E-MCM Add-On Instruction needs to be version 2.8 or higher. Earlier versions
support up to 100 commands.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 38 of 205

2.2.2 Master Command Configuration

This topic describes the communications with the Master Port and the Slave devices that
are connected to that port.

Verify you are in MONITOR TAGS mode. Then use the scroll bar at the bottom of the
window to view a description of each parameter.

Label Description

Enable 0 = Disabled
Command will not be executed, but can be enabled using command
control option in ladder logic.
1 = Enabled
Command is enabled and will be sent out to the target device.
2 = Conditional Write
Only for Func 5, 15, 6, or 16 data will be sent to the target device only
when the data to be written has changed.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 39 of 205

Label Description

IntAddress Specifies the module’s internal database register to be associated with
the command.
If the command is a read function, the data read from the server device
is stored beginning at the module’s internal database register value
entered in this field. This register value must be in the Read Data area
of the module’s memory, defined by the Read Register Start and Read
Register Count parameters in the Module section.
If the command is a write function, the data to be written to the server
device is sourced beginning from the module’s internal database
register specified. This register value must come from the Write Data
area of the module’s memory, defined by the Write Register Start and
Write Register Count parameters in the Module section.

For Modbus Function Codes 3, 4, 6, or 16, the allowable range is 0 to
9999 (16bit integers).

For Modbus Function Codes 1, 2, 5, or 15, the allowable range is 0 to
159,999 (bits). Note: This bit address range is available with MVI56E-
MCM firmware v3.07.014 or later. Previous versions have a bit address
range of 0 to 65535.

Note: When referencing bits in this parameter, the following controller
tags must be set:

For bits 0 to 65535 (Internal registers 0 to 4095):
MCM.CONFIG.Port1MasterCmd[0].Enable.8 = 0
MCM.CONFIG.Port1MasterCmd[0].Enable.9 = 0

For bits 65536 to 131071 (Internal registers 4096 to 8191):
MCM.CONFIG.Port1MasterCmd[0].Enable.8 = 1
MCM.CONFIG.Port1MasterCmd[0].Enable.9 = 0

For bits 131072 to 159999 (Internal registers 8192 to 9999):
MCM.CONFIG.Port1MasterCmd[0].Enable.8 = 0
MCM.CONFIG.Port1MasterCmd[0].Enable.9 = 1

High byte
Enable value

IntAddress* value MVI56E-MCM database
bit address location

0 -32638 to 32637 0 to 65535

1 -32638 to 32637 65536 to 131071

2 0 to 28927 131072 to 159999

*The IntAddress parameter is a signed 16bit integer.

PollInt The Poll Interval is the number of seconds that a Master device will wait
before issuing this command.

Count Sets how many continuous words (Function Codes 3, 4, and 16) or bits
(Function Codes 1, 2, and 15) to request from the Slave device.
Valid values are 1 to 125 words for function codes 3, 4, and 16, while
you can specify a range of 1 to 2000 for function codes 1, 2, and 15.
Note: These values are the maximum allowed in the Modbus protocol.
Some devices may support fewer words or bits than the maximum
allowed.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 40 of 205

Label Description

Swap Typically used when reading floating-point data, swaps the data read
from the Slave device before it is placed into the module memory. For
example, you receive 4 bytes of data from the Slave (ABCD).
0 = No swapping (ABCD)
1 = Word pairs switched (CDAB)
2 = Bytes and words switched (DCBA)
3 = Bytes swapped (BADC)

Node Node address of the device on the network to read data from, or write
data to. Valid addresses are 1 to 247. Address 0 is reserved for
broadcast write commands (will broadcast a Write command to all
devices on the network).

Func Specifies the Modbus function to be executed by the command. These
function codes are defined in the Modbus protocol.
1 = Read Coil Status (0xxxx)
2 = Read Input Status (1xxxx)
3 = Read Holding Registers (4xxxx)
4 = Read Input Registers (3xxxx)
5 = Force (Write Single) Coil (0xxxx)
6 = Force (Write Single) Holding Register (4xxxx)
15 = Preset (Write) Multiple Coils (0xxxx)
16 = Preset (Write) Multiple Registers (4xxxx)

DevAddress Specifies the Modbus Slave address for the registers associated with
that command. This is the offset address for the Modbus Slave device.
With Modbus, to read an address of 40001, what will actually be
transmitted out port is Function Code 03 (one byte) with an address of
00 00 (two bytes). This means that to read an address of 40501, use
Func 3 with a DevAddress of 500.
This applies to Modbus addresses 10001 to 47999.
Below is a definition that will help with your DevAddress configuration:

Function Codes 1, 5, or 15

▪ DevAddress = Modbus address in device - 0001
Example: Modbus address 0001 = DevAddress 0

▪ Modbus address 1378 = DevAddress 1377

Function Code 2

▪ DevAddress = Modbus address in device - 10001
Example: Modbus address 10001 = DevAddress 0

▪ Modbus address 10345 = DevAddress 344

Function Codes 3, 6, or 16

▪ DevAddress = Modbus address in device - 40001
Example: Modbus address 40001 = DevAddress 0

▪ Modbus address 40591 = DevAddress 590

Function Code 4

▪ DevAddress = Modbus address in device - 30001
Example: Modbus address 30001 = DevAddress 0

▪ Modbus address 34290 = DevAddress 4289

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 41 of 205

2.2.3 Other Modbus Addressing Schemes

The two most common schemes are six-digit addressing (400101, 301000, etc…) and
some devices show their addressing already as an offset address (the address that
actually goes out on the Modbus communication line). For example:

Actual Values (Input Registers) Addresses: 0200 to 0E1F

STATUS 0200 Switch Input Status

 0201 LED Status Flags

 0202 LED Attribute Flags

 0203 Output Relay Status Flags

If your device manufacturer uses "Input Registers", use Function Code 4, and then place
the address shown in the DevAddress field. Also, most manufacturers that show this
type of addressing will list the address in hex, as is the case with the device shown
above. So for this example device, use Func = 4 (Input Registers) with a DevAddress of
512 decimal (200h) to read the "Switch Input Status" value.

Why does my Slave show addressing such as 400,001 or 301,345?

For the 6 digit addressing, use the same function codes and configuration as configured
above, just the starting address has changed.

Below is a definition that will help with your DevAddress configuration:

Function Codes 1, 5, or 15 DevAddress = Modbus address in device - 0001

• Example: Modbus address 0001 = DevAddress 0

• Modbus address 1378 = DevAddress 1377

Function Code 2 DevAddress = Modbus address in device - 100001

• Example: Modbus address 100001 = DevAddress 0

• Modbus address 100345 = DevAddress 344

Function Codes 3, 6, or 16 DevAddress = Modbus address in device - 400001

• Example: Modbus address 400001 = DevAddress 0

• Modbus address 400591 = DevAddress 590

Function Code 4 DevAddress = Modbus address in device - 300001

• Example: Modbus address 300001 = DevAddress 0

• Modbus address 304290 = DevAddress 4289

For example, the device listed above could show their addressing as follows:

To read the same parameter "Switch_Input_Status", you would still issue a Function
Code 4, and use a DevAddress of 512 decimal.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 42 of 205

2.3 Master Command Examples

2.3.1 Read Holding Registers 4x (Modbus Function Code 3)

The 4x holding registers are used for Analog Values such as Pressure, Temperature,
Current, and so on. These are 16-bit register values, but they can also store Floating-
Point Data Handling (Modbus Master) (page 49). You can also write to these Modbus
addresses using Modbus Function Codes 6 or 16.

Below is a sample command to read Modbus addresses 40001 to 40010 of node 1 on
the Modbus network.

Label Description

Enable = 1 The module will send the command every time it goes through the
command list.

IntAddress = 1000 Places the data read from the Slave device into the module at address
1000. IntAddress 1000 of the module memory will be copied into the tag
MCM.DATA.READDATA[0].

Count = 10 Reads 10 consecutive registers from the Slave device.

Node = 1 Issues the Modbus command to node 1 on the network.

Func = 3 Issues Modbus Function Code 3 to Read Holding Registers.

DevAddress = 0 Function Code 3, DevAddress of 0 will read address 40001
Along with a count of 10, this command reads 40001 to 40010.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 43 of 205

2.3.2 Read Input Registers 3x (Modbus Function Code 4)

Like the 4x holding registers, 3x input registers are used for reading analog values that
are 16-bit register values. You can also use these registers to store Floating-Point Data
Handling (Modbus Master) (page 49). Unlike the 4x registers, 3x registers are Read
Only.

Below is a sample command to read Modbus addresses 30021 to 30030 of node 1 on
the Modbus network.

Label Description

Enable = 1 The module will send the command every time it goes through the
command list.

IntAddress = 1010 Places the data read from the Slave device into the module at address
1010. IntAddress 1010 of the module memory will be copied into the tag
MCM.DATA.READDATA[10].

Count = 10 Reads 10 consecutive registers from the Slave device.

Node = 1 Issues the Modbus command to node 1 on the network.

Func = 4 Issues Modbus Function Code 4 to Read Input Registers.

DevAddress =20 Function Code 4 DevAddress of 20 will read address 30021
Along with a count of 10, this command reads 30021 to 30030.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 44 of 205

2.3.3 Read Coil Status 0x (Modbus Function Code 1)

Modbus Function Code 1 reads the Coils addressed at 0001 to 9999 from a Slave
device. These are bit values that are read using Modbus Function Code 1, and can be
written to using Function Code 5 or 15. Within a Slave device, this is an individual bit
value. Thus, the IntAddress field must be defined down to the bit level within your
MasterCmd.

Below is a sample command to read Modbus addresses 0321 to 0480 of node 1 on the
Modbus network.

Label Description

Enable = 1 The module will send the command every time it goes through the
command list.

IntAddress = 16320 Places the data read from the Slave device into the module at address
16320. IntAddress 16320 of the module memory will be copied into the
tag MCM.DATA.READDATA[20] because 16320 represents a bit
address within the memory of the MVI56E-MCM module (16320 / 16 =
register 1020).

Count = 160 Reads 160 consecutive bits from the Slave device.

Node = 1 Issues the Modbus command to node 1 on the network.

Func = 1 Issues Modbus Function Code 1 to Read Coils.

DevAddress = 320 Function Code 1, DevAddress of 320 will read address 0321
Along with a count of 160, this command reads 0321 to 0480.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 45 of 205

2.3.4 Read Input Status 1x (Modbus Function Code 2)

Use this command to read Input Coils from a Slave device. These are single bit
addresses within a Modbus Slave device. Unlike Coils 0xxx, the Input Coils are Read
Only values and cannot be written to by a Modbus Master device. Also like the Coils
0xxx, the IntAddress field of this command is defined down to the bit level within the
module memory.

Below is a sample command to read Modbus addresses 10081 to 10096 of node 1 on
the Modbus network.

Label Description

Enable = 1 The module will send the command every time it goes through the
command list.

IntAddress = 16480 Places the data read from the Slave device into the module at address
16480. IntAddress 16480 of the module memory will be copied into the
tag MCM.DATA.READDATA[30] (bit16480 / 16 = register 1030).

Count = 16 Reads 16 consecutive registers from the Slave device.

Node = 1 Issues the Modbus command to node 1 on the network.

Func = 2 Issues Modbus Function Code 2 to Read Input Coils.

DevAddress = 80 Function Code 2, DevAddress of 80 will read address 10081
Along with a count of 16, this command reads 10081 to 10096.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 46 of 205

2.3.5 Force (Write) Single Coil 0x (Modbus Function Code 5)

Used to write a Coil of a Slave device, these are single bit addresses within a Modbus
Slave device. The IntAddress field of this command is defined down to the bit level within
the module memory, and should come from an area of memory that has been defined
within the MCM.DATA.WRITEDATA area (this is configured within
MCM.CONFIG.MODDEF.

Below is a sample command to write Modbus addresses 0513 of node 1 on the Modbus
network, only when the data associated with the IntAddress has changed.

Label Description

Enable = 2 The module will send the command only when the data within the
IntAddress field of the module has changed.

IntAddress = 160 Will write the data to the Slave device when the value at
WriteData[10].0 has changed. Because this is a bit level command, the
IntAddress field must be defined down to the bit level.

Count = 1 Will write a single bit to the device (Function Code 5 will 1 support a
count of 1).

Node = 1 Issues the Modbus command to node 1 on the network.

Func = 5 Issues Modbus Function Code 5 to write a single coil.

DevAddress = 512 Function Code 5, DevAddress of 512 will read address 0513

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 47 of 205

2.3.6 Force (Write) Multiple Coils 0x (Modbus Function Code 15)

Use this function code to write multiple Coils in the 0xxx address range. This function
code sets multiple Coils within a Slave device using the same Modbus command. Not all
devices support this function code. Refer to your Slave device documentation before
implementing this function code.

This function code will also support the Enable code of 2, to write the data to the Slave
device only when the data associated within the IntAddress field of the module has
changed. The IntAddress is once again defined down to the bit level as a Function Code
15 is a bit level Modbus function.

Below is a sample command to write Modbus addresses 0001 to 0016 of node 1 on the
Modbus network.

Label Description

Enable = 2 The module will send the command to the Slave device only when the
data associated within the IntAddress of the MVI56E-MCM module
memory has changed.

IntAddress = 320 Writes the data in bit 320 of the module memory to the Slave device.
Based on the MCM.CONFIG.MODDEF setting, this would be the data in
MCM.DATA.WRITEDATA[20].0 to [20].15 in the ladder logic.

Count = 16 Writes 16 consecutive bits to the Slave device.

Node = 1 Issues the Modbus command to node 1 on the network.

Func = 15 Issues Modbus Function Code 15 to write multiple coils.

DevAddress = 0 Function Code 15, DevAddress of 0 will read address 0001
Along with a count of 16, this command writes to 0001 to 0016.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 48 of 205

2.3.7 Preset (Write) Single Register 4x (Modbus Function Code 6)

Used to write to Modbus Holding Registers 4xxxx, this function code will write a single
register to the Slave device. The Enable code can be set to a value of 1 for a continuous
write, or a value of 2 to write the data to the Slave device only when the data associated
with the IntAddress field has changed.

Below is a sample command to write Modbus addresses 41041 of node 1 on the
Modbus network.

Label Description

Enable = 1 The module will send the command every time it goes through the
command list.

IntAddress = 5 Writes the data from address 5 of the module memory to the Slave
device. Based on the MCM.CONFIG.MODDEF configuration, this will
take the data from MCM.DATA.WRITEDATA[5] and write that information
out to the Slave device.

Count = 1 Writes 1 register (16-bit) to the Slave device.

Node = 1 Issues the Modbus command to node 1 on the network.

Func = 2 Issues Modbus Function Code 6 to write a single register.

DevAddress = 1040 Function Code 6, DevAddress of 1040 will write to address 41041 of the
Modbus Slave device.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 49 of 205

2.3.8 Preset (Write) Multiple Registers 4x (Modbus Function Code 16)

Used to write to Modbus Holding Registers 4xxxx, this function code will write multiple
registers to the Slave device. The Enable code can be set to a value of 1 for a
continuous write, or a value of 2 to write the data to the Slave device only when the data
associated with the IntAddress field has changed.

Below is a sample command to write Modbus addresses 41051 to 41060 of node 1 on
the Modbus network.

Label Description

Enable = 2 The module will send the command only when the data associated with
the IntAddress of the module has changed.

IntAddress =30 Writes the data from Internal Address 30 of the module memory to the
Slave device. Based on the MCM.CONFIG.MODDEF configuration, this
will write the data from MCM.DATA.WRITEDATA[30] TO [39] to the Slave
device.

Count = 10 Writes 10 consecutive registers to the Slave device.

Node = 1 Issues the Modbus command to node 1 on the network.

Func = 16 Issues Modbus Function Code 16 to write Holding Registers.

DevAddress = 1050 Function Code 16, DevAddress of 1050 will write address 41051.
Along with a count of 10, this command writes 41051 to 41060 of the
Slave device.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 50 of 205

2.4 Floating-Point Data Handling (Modbus Master)

In many applications, it is necessary to read or write floating-point data to the Slave
device. The sample program only provides an INT array for the ReadData and Write
Data array (16-bit signed integer value). In order to read/write floating-point data to and
from the Slave device, you must add additional ladder to handle the conversion of the
data to a REAL data type within the ControlLogix processor.

The following topics show how to read or write data to a Slave device. These topics also
show when to use the Float Flag and Float Start parameters within the module
configuration. For all applications, floating-point data can be read from a device without
any changes to the Float Flag and Float Start parameters. You only need to configure
these parameters to issue a Write command to a device that uses a single Modbus
address, such as 47001, to represent a single floating-point value.

2.4.1 Read Floating-Point Data

The following is an addressing of a Slave device with a parameter using two registers
40257 and 40258.

Value Description Type

40257 KWH Energy Consumption Float, lower 16 bits

40258 KWH Energy Consumption Float, upper 16 bits

To issue a Read command to this parameter, use the following configuration:

Parameter Value Description

Enable 1 Sends the command every time through the command list.

IntAddress 1000 Places data at address 1000 of the module memory. Based on the
configuration in ModDef this will put the data at the tag
MCM.DATA.READDATA[0].

PollInt 0 No delay for this command.

Count 2 Reads 2 consecutive registers from the Slave device. These 2
Modbus registers will make up the "Energy Consumption" floating-
point value.

Swap 0 Swap Code Description

0 None - No Change is made in the byte ordering
(1234 = 1234)

1 Words - The words are swapped (1234=3412)

2 Words & Bytes - The words are swapped then
the bytes in each word are swapped
(1234=4321)

3 Bytes - The bytes in each word are swapped
(1234=2143)

Node 1 Sends the command to Node #1.

Func 3 Issues a Modbus Function Code 3 to "Read Holding registers."

DevAddress 256 Along with the Function Code 3, DevAddress 256 will read
Modbus address 40257 of the Slave device.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 51 of 205

Along with the Function Code 3, DevAddress 256 will read Modbus address 40257 of
the Slave device. The above command will read 40257 and 40258 of the Modbus Slave
#1 and place that data in MCM.DATA.READDATA[0] and [1].

Within the controller tags section of the ControlLogix processor, it is necessary to
configure a tag with the data type of "REAL" as shown in the following illustration.

[+] Energy_Consumption REAL[1] Float

Copy data from the MCM.DATA.READDATA[0] and [1] into the tag
ENERGY_CONSUMPTION that has a data type of REAL. Use a COP statement within the
ladder logic. For example:

Because the tag MCM.DATA.READDATA[0] should only be used within the above
command, an unconditional COP statement can be used.

Notice the length of the COP statement is a value of 1. Within a Rockwell Automation
processor, a COP statement will copy the required amount of "Source" values to fill the
"Dest" tag for the Length specified.

Therefore, the above statement will copy ReadData[0] and [1] to fill the 32 bits required
for the tag "Energy_Consumption".

Note: Do not use a MOV statement. A MOV will convert the data from the Source register to the destination
register data type. This would create a data casting statement and will result in the loss or corruption of the
original data.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 52 of 205

2.4.2 Read Multiple Floating-Point Registers

The following table is an example to read Multiple Floating-Point values and device
addresses. The table shows 7 consecutive floating-point values (14 Modbus addresses).

Value Description Type

40261 KW Demand (power) Float. upper 16 bits

40263 VAR Reactive Power Float. upper 16 bits

40265 VA Apparent Power Float. upper 16 bits

40267 Power Factor Float. upper 16 bits

40269 VOLTS Voltage, line to line Float. upper 16 bits

40271 VOLTS Voltage, line to neutral Float. upper 16 bits

40273 AMPS Current Float. upper 16 bits

Configure the command to read these 7 floats as follows:

Configure an array of 7 floats within the ControlLogix processor as shown in the
following illustration.

The following COP statement will copy the data from MCM.DATA.READDATA[0] TO [13]
into the array MCM_FLOAT_DATA[0] TO [6].

The "Length" parameter is set to the number of Floating-Point values that must be
copied from the MCM.DATA.READDATA array.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 53 of 205

2.4.3 Write Floats to Slave Device

To issue a Write command to Floating-Point addresses, use the configuration in the
following table. The following table describes the Modbus Map for the Slave device.

Value Description Type

40261 KW Demand (power) Float. upper 16 bits

40263 VAR Reactive Power Float. upper 16 bits

40265 VA Apparent Power Float. upper 16 bits

40267 Power Factor Float. upper 16 bits

40269 VOLTS Voltage, line to line Float. upper 16 bits

40271 VOLTS Voltage, line to neutral Float. upper 16 bits

40273 AMPS Current Float. upper 16 bits

You must use a COP statement to copy the data from floating-point data tags within the
ControlLogix processor, into the MCM.DATA.WRITEDATA array used by the MVI56E-
MCM module. Below is an example.

The length of this COP statement must now be 14. This will COP as many of the
MCM_FLOAT_DATA values required to occupy the MCM.DATA.WRITEDATA array for a
length of 14. This will take 7 registers, MCM_FLOAT_DATA[0] TO [6], and place that data
into MCM.DATA.WRITEDATA[0] TO [13].

Configure the command to write all 7 floats (14 Modbus addresses) as follows.

The command above will take the data from MCM.DATA.WRITEDATA[0] TO [13] and
write this information to the Slave device node #1 addresses 40261 to 40274.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 54 of 205

2.4.4 Read Floats with Single Modbus Register Address (Enron/Daniel
Float)

Some Modbus Slave devices use a single Modbus address to store 32 bits of data. This
type of data is typically referred to as Enron or Daniel Floating-Point.

A device that uses this addressing method may have the following Modbus Memory
Map.

Address Data Type Parameter

47001 32 bit REAL Demand

47002 32 bit REAL Reactive Power

47003 32 bit REAL Apparent Power

47004 32 bit REAL Power Factor

47005 32 bit REAL Voltage: Line to Line

47006 32 bit REAL Voltage: Line to Neutral

47007 32 bit REAL Current

This type of device uses one Modbus address per floating-point register. To read these
values from the Slave device, configure the following command within the module.

Notice that the count is now set to a value of 7. Because the Slave device utilizes only 7
Modbus addresses, a count of 7 will cause the Slave to respond with 14 registers (28
bytes) of information.

Important: This command will still occupy 14 register within the MCM.DATA.READDATA array. You must
not use addresses 1000 to 1013 in the IntAddress field for any other Modbus Master commands.

The COP statement for this type of data is the same as shown in Read Multiple Floating-
Point Registers (page 51).

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 55 of 205

2.4.5 Write to Enron/Daniel Floats

To issue a Write command to Enron/Daniel Floats, use the Float Flag and Float Start
parameters within the ModDef controller tags.

The following table describes the addresses that will be written to by the module.

Address Data Type Parameter

47001 32 bit REAL Demand

47002 32 bit REAL Reactive Power

47003 32 bit REAL Apparent Power

47004 32 bit REAL Power Factor

47005 32 bit REAL Voltage: Line to Line

47006 32 bit REAL Voltage: Line to Neutral

47007 32 bit REAL Current

Configure the Float Start and Float Flag parameters as shown.

The Float Flag causes the module to use the FloatStart parameter to determine which
DevAddress requires a write command to issue double the number of bytes.

With the above configuration, any DevAddress > 7000 is known to be floating-point data.
Therefore, a count of 1 will send 4 bytes of data, instead of the normal 2 bytes of data to
a non Enron/Daniel floating-point register.

1 First, copy the floating-point data from the ControlLogix processor into the
MCM.DATA.WRITEDATA array used by the MVI56E-MCM module. Below is an
example.

2 The length of this COP statement must now be 14. This will COP as many of the
MCM_FLOAT_DATA values required to occupy the MCM.DATA.WRITEDATA array for
a length of 14. This will take 7 registers, MCM_FLOAT_DATA[0] TO [6], and place that
data into MCM.DATA.WRITEDATA[0] TO [13].

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 56 of 205

The following illustration shows the command required to write these 7 Floating-Point
values.

Based on the IntAddress and the configuration within the MCM.CONFIG.MODDEF

section for WriteStartReg and WriteRegCount, the data from the tag
MCM.DATA.WRITEDATA[0] TO [6] will be written to Modbus addresses 47001 to 47007
of the Slave device node #1.

Note: A swap code may be required to put the data in the proper format for the Slave device.

2.5 Command Control and Event Command

You can use Command Control and Event Commands in Modbus Master mode to
change the command execution based on some conditions in ladder. The module goes
through the command list sequentially. For example:

• The module executes MCM.CONFIG.PORT1MASTERCMD[0]

• After completing that command, it will then execute
MCM.CONFIG.PORT1MASTERCMD[1], then MCM.CONFIG.PORT1MASTERCMD[2],
and so on.

You can use Command Control and Event Command to issue a command at the top of
the command queue, interrupting the regular command list execution.

You would typically use Command Control and Event Command to:

• Issue a reset to a device on a once a day basis

• Poll for end of hour data

• Issue special commands on the startup of a process or the changing of a batch

Important: Since these special command blocks will interrupt the normal polling list, you should use them
sparingly, to avoid interrupting your normal data transfer. Make sure that the data to be written to the device
contains the latest value from the WriteData tag that corresponds to the Command Control or Event
Command.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 57 of 205

2.5.1 Command Control

Command Control allows you to issue a command already defined in the Master
command list (but disabled) and enable that command for a single pass. Command
Control has a distinct advantage over Event Command in that it will still return an error
code for that command as configured in MCM.CONFIG.PORTX.CMDERRPTR. Up to 6
commands may be enabled at the same time.

The following illustration shows how to configure Command Control using the
MCM.UTIL.CMDCONTROL object in the ladder logic.

The following configuration will place 6 commands into the command queue.

MCM.CONFIG.PORT1MASTERCMD[0] to MCM.CONFIG.PORT1MASTERCMD[5] will be
enabled with this configuration. Error codes for each command are placed in the Error
Status table.

Tag Value Description

TriggerCmdCntrl 1 1 will execute the Command Control

NumberOfCommands 6 Number of commands per block

PortNumber 1 MVI56E-MCM Port number (Master)

CommandIndex[0] to [324] 0 to 324 Stores the command index for Command Control
block

CmdsAddedToQueue Number of commands added to queue. This is the
confirmation that the Command Control block has
completed successfully

CmdControlBlockID Temporary variable to calculate control block ID
number

CmdCntrolPending Aux. control command - prevents a second request
before acknowledgement is received

Note: For RSLogix version 15 and lower, the ladder logic necessary for the successful execution of this
block is contained in the _WriteControl ladder file, rung 4, and in the _ReadControl ladder file, rung 2.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 58 of 205

2.5.2 Event Command

Event Command allows you to add commands directly to the command queue,
interrupting the normal polling sequence of the module. Unlike Command Control, Event
Commands do not return an error code into the location defined by the
MCM.CONFIG.PORTX.CMDERRPTR value.

You do not need to define Event Commands in the regular command list. Event
Command adds a command to the top of the MVI56E-MCM module’s command queue
that is not defined within the command list.

Within an Event Command block, you define a Modbus command to add to the queue.

Important: Because these special command blocks will interrupt the normal polling list, you should use
them sparingly, to avoid interrupting your normal data transfer. Make sure that the data to be written to the
Slave contains the latest value from the WriteData tag that corresponds to the Event Command.

The following illustration describes the structure of the EventCmd block.

Parameter Value Description

EventCmdTrigger 1 1 = trigger the Event Command

EventCmdPending Used = EventCommand is executed once

PortNumber 1 Module Port # to send command out to

SlaveAddress 1 Modbus Slave ID command to be issued to

InternalDBAddress 1100 1100 will place the data read into
MCM.DATA.ReadData[100]

PointCount 10 Consecutive register/bits to read or write with the
command

SwapCode 0 Swap code used with command

ModbusFunctionCode 3 Function Code 3 is read 4xxxx holding registers

DeviceDBAddress 276 Address in the Slave device to read. With Function
Code 3, DeviceDBAddress of 276, the module will
read starting at address 40277 in the Slave device

EventCmdStatusReturned Return value of 0 = Fail, 1 = Success

EventBlockID Block ID number for the module to recognize the
Event Command, Slave address, and Port number
to send the command out

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Master
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 59 of 205

Note: For RSLogix version 15 and lower, the ladder logic used for the Event Command blocks is contained
in _WriteControl rung 5 and _ReadControl rung 4 within the sample ladder file.

Note: Event Command blocks can only send 1 command to the command queue per block.

Note: Event Commands (like Command Control) take priority over commands in the normal command list.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Slave
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 60 of 205

3 Configuration as a Modbus Slave

3.1 Overview

When configuring the module as a Slave, you will be providing whoever is programming
the Master side of the communications with a Modbus Memory Map.

Note: If you are using the Sample Ladder Logic, the transfer of data is already done.

Information that is to be read by the Modbus Master device will be placed in the
MCM.DATA.WRITEDATA array as this will be pushed out to the module so that values
from the ControlLogix processor can be read by the Modbus Master. Information that
must be written to the ControlLogix processor from the Modbus Master device will be
placed into the MCM.DATA.READDATA array.

To configure module as a Modbus Slave you must determine how much data you must
transfer to and from the module, to the Modbus Master.

The sample ladder file is configured to transfer 600 16-bit registers in each direction. If
more than that is required, please see Adjust the Input and Output Array Sizes
(Optional) (page 25).

Find out if the Master can read from one Modbus address and write to another Modbus
address, or, if the Master must use the same address to read and write data points.

If a Modbus command must bypass the read and write areas of the slave's memory area
and send Modbus commands directly to another device on the Modbus network (for
example, to a PLC), you must use Pass-Through mode. This allows the
MCM.DATA.WRITEDATA array to be used for all data transfer to the Master. Because the
data transfer of the MVI56E-MCM module cannot be bidirectional, when the Master
issues a Modbus Write command in Pass-Through mode, the MVI56E-MCM module
builds a special block of information. This block is then parsed by the ladder logic, and
the value written from the Modbus Master is then updated in the
MCM.DATA.WRITEDATA array.

Note: You should only use Pass-Through mode when there is no other option, as there is a drawback to this
mode that is not present in the standard mode.
Because the module must wait for the ladder logic to confirm receiving the new data from the Master, if the
Master issues consecutive write commands, the module cannot process the second write command until it
has finished with the first command. This will cause the module to respond with an error code of 6 (module
busy) on the Modbus network.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Slave
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 61 of 205

3.2 ModDef Settings

To configure Modbus Slave mode, use the MCM.CONFIG.MODDEF settings.

This section specifies which of the MVI56E-MCM module’s 10,000 registers of memory
to send from the ControlLogix processor to the MVI56E-MCM module (WriteData) and
which registers to send from the MVI56E-MCM module to the ControlLogix processor
(ReadData).

The WRITESTARTREG determines the starting register location for WRITEDATA [0 TO 599]
and the WRITEREGCNT determines how many of the 10,000 registers to use for
information to be written out to the module. The sample ladder file will configure 600
registers for Write Data, labeled MCM.WRITEDATA[0 TO 599].

Value Description

WriteStartReg Determines where in the 10,000 register module memory to place the
data obtained from the ControlLogix processor from the WriteData
tags.

WriteRegCnt Sets how many registers of data the MVI56E-MCM module will
request from the ControlLogix processor.

ReadStartReg Determines where in the 10,000 register module memory to begin
obtaining data to present to the ControlLogix processor in the
ReadData tags.

ReadRegCnt Sets how many registers of data the MVI56E-MCM module will send
to the ControlLogix processor.

BPFail Sets the consecutive number of backplane failures that will cause the
module to stop communications on the Modbus network.

ErrStatPtr This parameter places the STATUS data into the database of the
module. This information can be read be the Modbus Master to know
the status of the module.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Slave
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 62 of 205

With the sample configuration, the following is the layout of the tags and addressing.

The sample configuration values configure the module database for WRITEDATA[0 TO

599] to be stored in the module memory at register 0 to 599, and READDATA[0 TO 599] to
be stored in the module memory at registers 1000 to 1599 as shown above.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Slave
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 63 of 205

3.2.1 Modbus Memory Map

Based on the configuration described above, below is the default Modbus address for
the module. Each register within the module can be accessed as a 0xxx bit address,
1xxxx bit address, 3xxxx register address, or 4xxxx register address.

MVI Address 0xxx 1xxxx 3xxxx 4xxxx Tag Address

0 0001 to 0016 10001 to 10016 30001 40001 WriteData[0]

1 0017 to 0032 10017 to 10032 30002 40002 WriteData[1]

2 0033 to 0048 10033 to 10048 30003 40003 WriteData[2]

3 0049 to 0064 10049 to 10064 30004 40004 WriteData[3]

4 0065 to 0080 10065 to 10080 30005 40005 WriteData[4]

5 0081 to 0096 10081 to 10096 30006 40006 WriteData[5]

6 0097 to 0112 10097 to 10112 30007 40007 WriteData[6]

7 0113 to 0128 10113 to 10128 30008 40008 WriteData[7]

8 0129 to 0144 10129 to 10144 30009 40009 WriteData[8]

9 0145 to 0160 10145 to 10160 30010 40010 WriteData[9]

10 0161 to 0176 10161 to 10176 30011 40011 WriteData[10]

50 0801 to 0816 10801 to 10816 30051 40051 WriteData[50]

100 1601 to 1616 11601 to 11616 30101 40101 WriteData[100]

200 3201 to 3216 13201 to 13216 30201 40201 WriteData[200]

500 8001 to 8016 18001 to 18016 30501 40501 WriteData[500]

598 9569 to 9584 19569 to 19584 30599 40599 WriteData[598]

599 9585 to 9600 19585 to 19600 30600 40600 WriteData[599]

600 to 999 N/A N/A N/A N/A Reserved

1000 31001* 41001 ReadData[0]

1001 31002* 41002 ReadData[1]

1002 31003* 41003 ReadData[2]

1003 31004* 41004 ReadData[3]

1004 31005* 41005 ReadData[4]

1005 31006* 41006 ReadData[5]

1006 31007* 41007 ReadData[6]

1007 31008* 41008 ReadData[7]

1008 31009* 41009 ReadData[8]

1009 31010* 41010 ReadData[9]

1010 31011* 41011 ReadData[10]

1050 31051* 41051 ReadData[50]

1100 31101* 41101 ReadData[100]

1200 31201* 41201 ReadData[200]

1500 31501* 41501 ReadData[500]

1598 31599* 41599 ReadData[598]

1599 31600* 41600 ReadData[599]

(*) Values listed in the READDATA array for 31001 to 31600.

Although these are valid addresses, they will not work in the application. The Master
must issue a Write command to the addresses that correspond to the READDATA array.
For Modbus addresses 3xxxx these are considered Input registers, and a Modbus
Master does not have a function code for this type of data.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Slave
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 64 of 205

3.2.2 Customizing the Memory Map

In some cases, the above memory map will not work for the application. Sometimes a
Master must read bits starting at address 0001, and also read a register starting at
40001. With the memory map in this Modbus Memory Map (page 63), this is not
possible, as WRITEDATA[0] is seen as both 0001 to 0016, and 40001. To accommodate
this, you can customize the starting location within the module for each device using the
parameters shown below.

Parameter Value Description

BitInOffset 0 Defines the starting address within the module for 1xxxx
Modbus addressing. A value of 0 sets 10001 to 10016 as
address 0 in the MVI56E-MCM module.

WordInOffset 10 Defines the starting address within the module memory for
3xxxx registers.

OutOffset 1000 Defines the starting address within the module for 0xxx coils.

HoldOffset 1010 Defines the starting address within the module for 4xxxx
addressing.

Based on the configuration described above for the ModDef section of the module and
the values specified for the offset parameters, below is the Modbus addressing map for
the module.

MVI Address 0xxx 1xxxx 3xxxx 4xxxx Tag Address

0 10001 to 10016 WriteData[0]

1 10017 to 10032 WriteData[1]

9 10145 to 10160 WriteData[9]

10 10161 to 10176 30001 WriteData[10]

11 10177 to 10192 30002 WriteData[11]

100 11601 to 11616 30091 WriteData[100]

200 13201 to 13216 30191 WriteData[200]

500 18001 to 18016 30491 WriteData[500]

598 19569 to 19584 30489 WriteData[598]

599 19585 to 19600 30490 WriteData[599]

600 to 999 N/A N/A N/A N/A Reserved

1000 0001 to 0016 ReadData[0]

1001 0017 to 0032 ReadData[1]

1009 0145 to 0160 ReadData[9]

1010 0161 to 0176 40001 ReadData[10]

1011 0177 to 0192 40002 ReadData[11]

1050 0801 to 0816 40041 ReadData[50]

1100 1601 to 1616 40091 ReadData[100]

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Slave
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 65 of 205

MVI Address 0xxx 1xxxx 3xxxx 4xxxx Tag Address

1200 3201 to 3216 40191 ReadData[200]

1500 8001 to 8016 40491 ReadData[500]

1598 9569 to 9584 40589 ReadData[598]

1599 9585 to 9600 40590 ReadData[599]

With the offset parameters listed above, the Modbus Master could read from coils 10001
to 10176 using the tags MCM.DATA.WRITEDATA[0] TO [9]. The Master could also read
from address 30001 to 30490, and the data contained in those Modbus addresses would
come from the tags MCM.DATA.WRITEDATA[10] TO [499] within the ControlLogix
program.

The Master could then write to coils addressing 0001 to 0160 and this data would reside
within the ControlLogix program in tags MCM.DATA.READDATA[0] TO [9]. The Master
could then write to registers using Modbus addresses 40001 to 40590, and this
information would reside in addresses MCM.DATA.READDATA[10] TO [599].

Note: The offset parameter only sets the starting location for the data. As shown above, if the Master issues
a Write command to address 40001, the data will go into the ControlLogix processor at address
MCM.DATA.READDATA[10].

Likewise, a Write To bit address 0161 will also change to address
MCM.DATA.READDATA[10].0 within the program. Be careful not to overlap your data.
You may want leave additional registers/bits unused to allow for future expansion in the
program.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Slave
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 66 of 205

3.3 Slave Configuration

Any parameters not mentioned in this section are not used when the module is
configured as a Modbus Master.

Value Description

Enabled 1= enable port, 0 = disable port

Type 1= Modbus Slave Port

The module also supports a variety of Pass-Through modes. See
Pass-Through Blocks (page 132) for more information.

FloatFlag As a Slave, emulates Enron/Daniel style floats. See Floating-Point
Data Handling (Modbus Slave) (page 66) for more information.

FloatStart Register offset in message for floating data point. See Floating-
Point Data Handling (Modbus Slave) (page 66) for more
information.

Protocol 0 = Modbus RTU mode, 1 = Modbus ASCII mode

Baudrate Sets the baud rate for the port. Valid values for this field are 110,
150, 300, 600, 1200, 2400, 4800, 9600, 19200, 384 (for 38,400
baud), 576 (for 57,600 baud) and 115 or 1152 (for 115,200 baud)

Parity 0 = None, 1 = Odd, 2 = Even

DataBits 8 = Modbus RTU mode, 8 or 7 = Modbus ASCII mode

StopBits Valid values are 1 or 2

SlaveID Valid values are 1 to 247

3.4 Floating-Point Data Handling (Modbus Slave)

In most applications, the use of floating-point data requires no special handling.

1 Copy the data to and from the MVI56E-MCM module with a tag configured as a data
type REAL in the ControlLogix processor.

Each floating-point value will occupy 2 registers on the Modbus network.
Some Master devices use Enron or Daniel Float data. These types of floats require
one Modbus register for each float in the module memory. If your Master requires
this addressing, refer to the following section.
For standard floating-point data handling, the following is an example of copying 10
floats to the module.

2 First, configure a tag within the ControlLogix processor.

3 Then configure a COP statement within the main routine to copy this tag to the
module's MCM.DATA.WRITEDATA array.

The length of the copy statement is determined by the Dest file size. To copy 10 floats
from the MCM_Write_Floats array to the MCM.DATA.WRITEDATA array, the length of
the COP statement must be set to a value of 20.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Slave
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 67 of 205

To copy data from the MVI56E-MCM module to a floating-point tag within the ControlLogix
processor

1 Configure a tag within the ControlLogix processor as shown.

2 Then configure the COP statement to move data from the MCM.DATA.READDATA

array, and over to the new tag MCM_READ_FLOATS tag as shown here.

Once again, the COP statement will take as many of the Source elements required to fill
the Dest tag for the length specified. Therefore, the COP statement will take
MCM.DATA.READDATA[0] TO [19] to fill the MCM_READ_FLOATS[0] TO [9].

3.4.1 Enron/Daniel Float Configuration

Sometimes it is necessary for the module to emulate Enron or Daniel floating-point
addressing.

Copying the data to the MCM.DATA.WRITEDATA array and from the
MCM.DATA.READDATA array is the same as described in the section above. The main
difference is the addressing of the module.

For example, an Enron Float device is required to access address 47001 for floating-
point data, and each Modbus register would emulate a single float value (does not
require 2 Modbus addresses for 1 float value).

A Master device requiring this type of addressing, would require that for every count of 1,
the MVI56E-MCM module responds to the request message with 4 bytes (one 32-bit
REAL) value.

To emulate this addressing, the module has the parameters
MCM.CONFIG.PORTX.FLOATFLAG, FLOATSTART, and FLOATOFFSET.

Value Description

FloatFlag Tells the module to use the FloatStart and FloatOffset parameters
listed below

FloatStart Determines what starting address on the Modbus network to treat
as floating-point data. A value of 7000 will signal the module that
address 47001 on the Modbus network is the starting location for
Modbus floating-point data. Every address will occupy 2 registers
within the modules database

FloatOffset Determines the address within the module to which to associate
the data from the FloatStart section.

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Slave
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 68 of 205

Example configuration:

With the above configuration, this would be the addressing for the module.

Module Address Modbus Address Tag Address

100 47001 MCM.DATA.WriteData[100]

102 47002 MCM.DATA.WriteData[102]

104 47003 MCM.DATA.WriteData[104]

110 47006 MCM.DATA.WriteData[110]

120 47011 MCM.DATA.WriteData[120]

200 47051 MCM.DATA.WriteData[200]

300 47101 MCM.DATA.WriteData[300]

500 47201 MCM.DATA.WriteData[500]

MVI56E-MCM ♦ ControlLogix® Platform Configuration as a Modbus Slave
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 69 of 205

3.5 Read and Write Same Modbus Address (Pass Through)

In some applications, the Modbus Master must be able to read and write to the same
Modbus address within the module. This is not possible for normal Slave
communication, as data can either be read from the WriteData array, or written to the
ReadData array, but not both.

Pass Through mode allows the Modbus Master to bypass the module's internal memory,
and then read and write directly to the processor, using only the WriteData array. The
basic theory of pass through is that the ladder logic will constantly be updating values in
the MVI56E-MCM module memory using the WriteData array. When the Master issues a
Write command, the module will build a special block of data. This block of data is then
presented to the ladder logic and then copied back into the WriteData array. The
following illustration shows Pass Through operation of the module.

Note: For RSLogix version 15 and lower, the ladder logic necessary for the successful execution of this
block is contained in the subroutine _PassThru.

Pass Through should only be used when required. If a Master issues a Write command to the module, the
module must build a special block of information. Then, it waits for confirmation from the ladder logic that the
block has been processed.

Note: If the module is waiting for the block to be processed by the ladder, and the Master device issues
another Write command, the module will return an Error Code of 6 (module busy). This error causes the
ladder not to process data written by the Master.

MVI56E-MCM ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 70 of 205

4 Verify Communication

There are several ways to verify that the MVI56E-MCM module is communicating with
the processor and with the Modbus network.

• View the LED Status Indicators

• View the Module Status in the MVI56E-MCM Status Data Definition (page 160)

• View Diagnostics in Diagnostics and Troubleshooting (page 79)

4.1 Verifying Master Communications

The Modbus Master commands are configured, now it is time to verify that these
commands are working correctly.

Within the MVI56E-MCM module, there are a couple of ways of checking to see if the
commands that have been configured in the previous location are working correctly.

The most common, and detailed method of checking the communications is using the
MCM.CONFIG.PORTX.CMDERRPTR parameter. This parameter will tell you the individual
status of each command that is issued by the module. Another method is by checking
the MCM.STATUS.PRTXERRS location for total commands issued, responses received,
errors, and so on.

4.1.1 MVI56E-MCM Status Data Definition as a Master

This section contains a description of the members present in the MCM.STATUS object.
This data is transferred from the module to the processor as part of each read block
using the module's input image. Sample Ladder Logic will copy this information from the
LOCAL: X: I.DATA {OFFSET} tag into the MCM.STATUS array.

Offset Content Description

202 Program Scan Count This value is incremented each time a complete program
cycle occurs in the module.

203 to 204 Product Code These two registers contain the product code of "MCM".

205 to 206 Product Version These two registers contain the product version for the
current running software.

207 to 208 Operating System These two registers contain the month and year values for
the program operating system.

209 to 210 Run Number These two registers contain the run number value for the
currently running software.

211 Port 1 Command List
Requests

This field contains the number of requests made from this
port to Slave devices on the network.

212 Port 1 Command List
Response

This field contains the number of Slave response messages
received on the port.

213 Port 1 Command List
Errors

This field contains the number of command errors processed
on the port. These errors could be due to a bad response or
command.

214 Port 1 Requests This field contains the total number of messages sent from
the port.

215 Port 1 Responses This field contains the total number of messages received on
the port.

MVI56E-MCM ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 71 of 205

Offset Content Description

216 Port 1 Errors Sent This field contains the total number of message errors sent
from the port.

217 Port 1 Errors
Received

This field contains the total number of message errors
received on the port.

218 Port 2 Command List
Requests

This field contains the number of requests made from this
port to Slave devices on the network.

219 Port 2 Command List
Response

This field contains the number of Slave response messages
received on the port.

220 Port 2 Command List
Errors

This field contains the number of command errors processed
on the port. These errors could be due to a bad response or
command.

221 Port 2 Requests This field contains the total number of messages sent out the
port.

222 Port 2 Responses This field contains the total number of messages received on
the port.

223 Port 2 Errors Sent This field contains the total number of message errors sent
out the port.

224 Port 2 Errors
Received

This field contains the total number of message errors
received on the port.

225 Read Block Count This field contains the total number of read blocks
transferred from the module to the processor.

226 Write Block Count This field contains the total number of write blocks
transferred from the module to the processor.

227 Parse Block Count This field contains the total number of blocks successfully
parsed that were received from the processor.

228 Command Event
Block Count

This field contains the total number of command event
blocks received from the processor.

229 Command Block
Count

This field contains the total number of command blocks
received from the processor.

230 Error Block Count This field contains the total number of block errors
recognized by the module.

231 Port 1 Current Error For a Master Port, this field contains the command index
number of the most recently executed command that failed.
To find what kind of error occurred, see the Command Error
List entry for this command index number.

232 Port 1 Last Error For a Master Port, this field contains the command index
number of the previous most recently executed command
that failed. To find what kind of error occurred, see the
Command Error List entry for this command index number.

233 Port 2 Current Error For a Master Port, this field contains the command index
number of the most recently executed command that failed.
To find what kind of error occurred, see the Command Error
List entry for this command index number.

234 Port 2 Last Error For a Master Port, this field contains the command index
number of the previous most recently executed command
that failed. To find what kind of error occurred, see the
Command Error List entry for this command index number.

MVI56E-MCM ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 72 of 205

4.1.2 Command Error Codes

The MVI56E-MCM module will return an individual error code for every command
configured within the MCM.CONFIG.PORTXMASTERCMD section. The location of these
error codes are determined by the parameter MCM.CONFIG.PORTX.CMDERRPTR. This
parameter determines where in the module's 10,000-register database the error codes
for each command will be placed. The amount of error codes returned into the database
is determined by the MCM.CONFIG.PORTX.CMDCOUNT parameter, therefore if the
maximum number of commands have been selected (325), then 325 registers will be
placed into the module memory.

Note: To use up to 325 commands, your MVI56E-MCM module needs to have firmware version 3.01 or
higher, and your MVI56E-MCM Add-On Instruction needs to be version 2.8 or higher. Earlier versions
support up to 100 commands.

To be useful in the application, these error codes must be placed within the
MCM.DATA.READDATA array.

The configuration in the MCM.CONFIG.MODDEF section for READSTARTREG, and
READREGCOUNT determine which of the 10,000 registers will be presented to the
ControlLogix processor and placed in the tag MCM.DATA.READDATA array.

Based on the sample configuration values for READSTARTREG and READREGCNT, this
will be addresses 1000 to 1599 of the module memory. Below are the sample
configuration values.

Based on these values shown above, a good place for the
MCM.CONFIG.PORTX.CMDERRPTR is address 1500:

With the CMDERRPTR pointer set to address 1500 and the CMDCOUNT set to a value of
100, this will place your Command Error Data at addresses 1500 to 1599 of the module
memory, and because of the before mentioned configuration of the
MCM.CONFIG.MODDEF READSTARTREG and READREGCNT parameters, the command
error data will be placed into the tags MCM.DATA.READDATA[500] TO [599].

MVI56E-MCM ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 73 of 205

Each command configured in the MCM.CONFIG.PORTX.MASTERCMD will occupy one
register within the READDATA array. Based on the sample configuration values, the
following table is true.

Error Code for Command ReadData Location

MCM.CONFIG.Port1MasterCmd[0] MCM.DATA.ReadData[500]

MCM.CONFIG.Port1MasterCmd[1] MCM.DATA.ReadData[501]

MCM.CONFIG.Port1MasterCmd[2] MCM.DATA.ReadData[502]

MCM.CONFIG.Port1MasterCmd[3] MCM.DATA.ReadData[503]

MCM.CONFIG.Port1MasterCmd[4] MCM.DATA.ReadData[504]

MCM.CONFIG.Port1MasterCmd[98] MCM.DATA.ReadData[598]

MCM.CONFIG.Port1MasterCmd[99] MCM.DATA.ReadData[599]

To know where to look for the error data, you need to know what the individual error
codes are. The following tables describe the possible error codes for the module:

Standard Modbus Protocol Errors

Code Description

1 Illegal Function

2 Illegal Data Address

3 Illegal Data Value

4 Failure in Associated Device

5 Acknowledge

6 Busy, Rejected Message

The "Standard Modbus Protocol Errors" are error codes returned by the device itself.
This means that the Slave device understood the command, but replied with an
Exception Response, which indicates that the command could not be executed. These
responses typically do not indicate a problem with port settings or wiring.

The most common values are Error Code 2 and Error Code 3.

Error Code 2 means that the module is trying to read an address in the device that the
Slave does not recognize as a valid address. This is typically caused by the Slave
device skipping some registers. If you have a Slave device that has address 40001 to
40005, and 40007 to 40010, you cannot issue a read command for addresses 40001 to
40010 (function code 3, DevAddress 0, Count 10) because address 40006 is not a valid
address for this Slave.

Instead, try reading just one register, and see if the error code goes away. You can also
try adjusting your DevAddress -1, as some devices have a 1 offset.

An Error Code of 3 is common on Modbus Write Commands (Function Codes 5,6,15, or
16). Typically, this is because you are trying to write to a parameter that is configured as
read only in the Slave device, or the range of the data you are writing does not match
the valid range for that device.

Refer to the documentation for your Slave device, or contact ProSoft Technical Support
for more help with these types of error codes.

MVI56E-MCM ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 74 of 205

Module Communication Error Codes

Module Communication Errors are generated by the MVI56E-MCM module, and indicate
communication errors with the Slave device.

Code Description

-1 CTS modem control line not set before transmit

-2 Timeout while transmitting message

-10 Receive buffer near limit; too many commands or large data sets
requested.

-11 a Timeout waiting for response after request

253 b Incorrect Slave address in response

254 b Incorrect function code in response

255 b Invalid CRC/LRC value in response

a Error Code -11 indicates that the module is transmitting a message on the
communications wire. However, it is not receiving a response from the addressed Slave.
This error is typically caused by one or more of the following conditions.

• Parameter mismatch, for example the module is set for 9600 baud, Slave is set
for 19,200, parity is set to none, Slave is expecting even, and so on.

• Wiring problem, for example the port jumper on the module is set incorrectly, or +
and - lines on RS485 are switched)

• The Slave device is not set to the correct address, for example the Master is
sending a command to Slave 1 and the Slave device is configured as device 10.

With a -11 error code, check all of the above parameters, wiring, and settings on the
Slave device. Also make sure that you cycle power to the module, or toggle the
MCM.CONTROL.WARMBOOT or COLDBOOT bit to transfer the values in the
MCM.CONFIG array to the module.

b Error codes of 253 to 255 typically indicate noise on RS485 lines. Make sure that you
are using the proper RS485 cable, with termination resistors installed properly on the
line. If termination resistors are installed, try removing them as they are usually only
required on cable lengths of more than 1000 feet.

MVI56E-MCM ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 75 of 205

Command List Entry Errors

Code Description

-41 Invalid enable code

-42 Internal address > maximum address

-43 Invalid node address (< 0 or > 255)

-44 Count parameter set to 0

-45 Invalid function code

-46 Invalid swap code

The error codes indicate the module has detected an error when parsing the command.

For all commands that have not been configured (all parameters set to a value of 0) you
will receive an error code of -44. To remove this error code, you can change your
MCM.CONFIG.PORTX.CMDCOUNT parameter to the number of commands that are
actually configured, cycle power to the module, or toggle the
MCM.CONTROL.WARMBOOT or COLDBOOT bit to transfer the new values to the module.

Transferring the Command Error List to the Processor

You can transfer the command error list to the processor from the module database. To
place the table in the database, set the Command Error Pointer
(MCM.PORT1.CMDERRPTR) parameter to the database location desired.

In the sample ladder, the MCM.PORT1.CMDERRPTR tag is set to a value of 1100. This
will cause the error value of command 0 to be placed at database address 1100. Each
command error value occupies one database word. The error value for command 1 will
be in location 1101 and the remaining values in consecutive database locations.

To transfer this table to the processor, refer to Command Error Codes (page 72). Make
sure that the Command Error table is in the database area covered by the Read Data
(MCM.MODDEF.READSTARTREG and MCM.MODDEF.READREGCNT).

MVI56E-MCM ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 76 of 205

4.1.3 MCM Status Data

Status information can also be obtained from the MVI56E-MCM module by checking the
MCM.STATUS.PRTXERRS location. Below is a sample.

If your system is working correctly, you will see CMDREQ, CMDRESP, REQUESTS, and
RESPONSES all incrementing together. If you see that CMDERR is incrementing,
determine what command is causing the error (using the error code defined in the
previous Command Error Codes (page 72)) and correct the issue causing the error.

Note: This information is not as detailed as the individual error codes, but they can help to troubleshoot your
application.

Also within the MCM.STATUS location is the parameters for Last Error and Previous
Error, shown below.

This indicates the command index that last generated an error and does not indicate a
command currently in error. In the above example, a value of 2 in PORT1LASTERR

indicates that the last error was generated by MCM.PORT1MASTERCMD[2]. This does not
indicate that this command is currently in error. The value in
MCM.STATUS.PORT1PREVIOUSERR indicates that before MASTERCMD[2] generated an
error, MCM.PORT1.MASTERCMD[1] posted an error.

MVI56E-MCM ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 77 of 205

4.2 Verify Slave Communications

For verifying the communications to the module as a Slave you can monitor the
STATUS tags under the PRTXERRS section.

Below is an example.

The REQUESTS field shows the number of request messages sent to the module as a
Slave. The RESPONSES field shows how many times the module has responded to a
request message from the Modbus Master.

4.2.1 MVI56E-MCM Status Data Definition as a Slave

This section contains a description of the members present in the MCM.STATUS object.
This data is transferred from the module to the processor as part of each read block
using the module's input image. Sample Ladder Logic will copy this information from the
LOCAL: X: I.DATA {OFFSET} tag into the MCM.STATUS array.

Offset Content Description

202 Program Scan Count This value is incremented each time a complete program
cycle occurs in the module.

203 to 204 Product Code These two registers contain the product code of "MCM".

205 to 206 Product Version These two registers contain the product version for the
current running software.

207 to 208 Operating System These two registers contain the month and year values for
the program operating system.

209 to 210 Run Number These two registers contain the run number value for the
currently running software.

214 Port 1 Requests This field contains the total number of messages sent from
the port.

215 Port 1 Responses This field contains the total number of messages received
on the port.

216 Port 1 Errors Sent This field contains the total number of message errors sent
from the port.

217 Port 1 Errors
Received

This field contains the total number of message errors
received on the port.

221 Port 2 Requests This field contains the total number of messages sent out
the port.

222 Port 2 Responses This field contains the total number of messages received
on the port.

223 Port 2 Errors Sent This field contains the total number of message errors sent
out the port.

224 Port 2 Errors
Received

This field contains the total number of message errors
received on the port.

225 Read Block Count This field contains the total number of read blocks
transferred from the module to the processor.

226 Write Block Count This field contains the total number of write blocks
transferred from the module to the processor.

227 Parse Block Count This field contains the total number of blocks successfully
parsed that were received from the processor.

MVI56E-MCM ♦ ControlLogix® Platform Verify Communication
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 78 of 205

Offset Content Description

228 Command Event
Block Count

This field contains the total number of command event
blocks received from the processor.

229 Command Block
Count

This field contains the total number of command blocks
received from the processor.

230 Error Block Count This field contains the total number of block errors
recognized by the module.

231 Port 1 Current Error For a Slave Port, this field contains the value of the most
recently returned error code.

232 Port 1 Last Error For a Slave Port, this field contains the value of the previous
most recently returned error code.

233 Port 2 Current Error For a Slave Port, this field contains the value of the most
recently returned error code.

234 Port 2 Last Error For a Slave Port, this field contains the value of the previous
most recently returned error code.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 79 of 205

5 Diagnostics and Troubleshooting

The module provides information on diagnostics and troubleshooting in the following
forms:

• LED status indicators on the front of the module.

• Status data contained in the module can be viewed in ProSoft Configuration Builder
through the Ethernet port.

• Status data values are transferred from the module to the processor.

5.1 Ethernet LED Indicators

The Ethernet LEDs indicate the module's Ethernet port status as follows:

LED State Description

10/100 Off No activity on the Ethernet port.

Green Flash The Ethernet port is actively transmitting or receiving data.

LINK/ACT Off No physical network connection is detected. No Ethernet
communication is possible. Check wiring and cables.

Green Solid Physical network connection detected. This LED must be On solid
for Ethernet communication to be possible.

5.1.1 Scrolling LED Status Indicators

The scrolling LED display indicates the module’s operating status as follows:

Initialization Messages

Code Message

Boot / DDOK Module is initializing

Ladd Module is waiting for required module configuration data from
ladder logic to configure the Modbus ports

Waiting for Processor
Connection

Module did not connect to processor during initialization

▪ Sample ladder logic or AOI is not loaded on processor
▪ Module is located in a different slot than the one configured in

the ladder logic/AOI
▪ Processor is not in RUN or REM RUN mode

Last config: <date> Indicates the last date when the module changed its IP address.
You can update the module date and time through the module’s
web page, or with the MVI56E Optional Add-On Instruction.

Config P1/P2 <Modbus mode>
<Port type> <Baud> <Parity>
<Data bits> <Stop Bits> <RS
Interface> <ID (Slave)>
<Cmds: (Master)>

After power up and every reconfiguration, the module will display
the configuration of both ports. The information consists of:

▪ Modbus mode: RTU/ASCII
▪ Port type: Master/Slave
▪ Baud: 115200 / 57600 / 38400 / 19200 / 9600/ 4800 / 2400 /

1200 / 600 / 300
▪ Parity: None / Even / Odd
▪ Data bits: 7 / 8
▪ Stop bits: 1 / 2
▪ RS Interface: RS-232 / RS-422 / RS-485
▪ ID: Slave Modbus Address
▪ Cmds: Configured Modbus Master Commands

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 80 of 205

Operation Messages

After the initialization step, the following message pattern will be repeated.

<Backplane Status> <IP Address> <Backplane Status> <Port Status>

Code Message

<Backplane Status> OK: Module is communicating with processor
ERR: Module is unable to communicate with processor. For
this scenario, the <Port Status> message above is replaced
with "Processor faulted or is in program mode".

<IP Address> Module IP address

<Port Status> OK: Port is communicating without error
Master/Slave Communication Errors: port is having
communication errors. Refer to Diagnostics and
Troubleshooting (page 79) for further information about the
error.

5.1.2 Non-Scrolling LED Status Indicators

The non-scrolling LEDs indicate the module’s operating status as follows:

LED Label Color Status Indication

APP Red or
Green

Off The module is not receiving adequate power or is not securely
plugged into the rack. May also be OFF during configuration
download.

Green The MVI56E-MCM is working normally.

Red The most common cause is that the module has detected a
communication error during operation of an application port.
The following conditions may also cause a RED LED:

▪ The firmware is initializing during startup
▪ The firmware detects an on-board hardware problem

during startup
▪ Failure of application port hardware during startup
▪ The module is shutting down
▪ The module is rebooting due to a ColdBoot or WarmBoot

request from the ladder logic or Debug Menu

OK Red or
Green

Off The module is not receiving adequate power or is not securely
plugged into the rack.

Green The module is operating normally.

Red The module has detected an internal error or is being
initialized. If the LED remains RED for over 10 seconds, the
module is not working. Remove it from the rack and re-insert it
to restart its internal program.

ERR Not used.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 81 of 205

5.2 Clearing a Fault Condition

Typically, if the OK LED on the front of the module turns RED for more than ten
seconds, a hardware problem has been detected in the module or the program has
exited.

To clear the condition:

1 Turn off power to the rack.
2 Remove the card from the rack.
3 Verify that all jumpers are set correctly.
4 If the module requires a Compact Flash card, verify that the card is installed

correctly.
5 Re-insert the card in the rack and turn the power back on.
6 Verify correct configuration data is being transferred to the module from the

ControlLogix controller.

If the module's OK LED does not turn GREEN, verify that the module is inserted
completely into the rack. If this does not cure the problem, contact ProSoft Technology
Technical Support.

5.3 Troubleshooting the LEDs

Use the following troubleshooting steps if problems occur when the module is powered
up. If these steps do not resolve the problem, please contact ProSoft Technology
Technical Support.

5.3.1 Processor Errors

Problem Description Steps to take

Processor Fault Verify the module is securely plugged into the slot that has been
configured for the module in the I/O Configuration of RSLogix.
Verify the slot location in the rack has been configured correctly in the
ladder logic.

Processor I/O LED
flashes

This indicates a problem with backplane communications. A problem could
exist between the processor and any installed I/O module, not just the
MVI56E-MCM. Verify all modules in the rack are configured correctly.

5.3.2 Module Errors

Problem Description Steps to take

Module Scrolling LED
display: <Backplane
Status> condition
reads ERR

This indicates that backplane transfer operations are failing. Connect to
the module’s Configuration/Debug port to check this.
To establish backplane communications, verify the following items:

▪ The processor is in RUN or REM RUN mode.
▪ The backplane driver is loaded in the module.
▪ The module is configured for read and write data block transfer.
▪ The ladder logic handles all read and write block situations.
▪ The module is properly configured in the processor I/O configuration

and ladder logic.

OK LED remains red The program has halted or a critical error has occurred. Connect to the
communication port to see if the module is running. If the program has
halted, turn off power to the rack, remove the card from the rack and re-
insert the card in the rack, and then restore power to the rack.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 82 of 205

5.4 Setting Up ProSoft Configuration Builder

ProSoft Configuration Builder (PCB) provides a convenient way to configure, diagnose,
and troubleshoot your MVI56E-MCM module.

5.4.1 Installing ProSoft Configuration Builder

The ProSoft Configuration Builder (PCB) software is used to configure the module. You
can find the latest version of the ProSoft Configuration Builder (PCB) on our web site:
www.prosoft-technology.com. The installation filename contains the PCB version
number. For example, PCB_4.1.0.4.0206.EXE.

If you are installing PCB from the ProSoft website:

1 Open a browser window and navigate to www.prosoft-technology.com.
2 Search for PCB.
3 Click the download link for ProSoft Configuration Builder, and save the file to your

Windows desktop.
4 After the download completes, double-click the file to install. If you are using

Windows 7, right-click on the PCB installation file and click RUN AS ADMINISTRATOR.
Follow the instructions that appear on the screen.

5 If you want to find additional software specific to your MVI56E-MCM, enter the model
number into the website search box and press the ENTER key.

https://www.prosoft-technology.com/
https://www.prosoft-technology.com/

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 83 of 205

5.4.2 Setting Up the Project

To begin, start PROSOFT CONFIGURATION BUILDER (PCB).

If you have used other Windows configuration tools before, you will find the screen
layout familiar. PCB’s window consists of a tree view on the left, and an information pane
and a configuration pane on the right side of the window. When you first start PCB, the
tree view consists of folders for Default Project and Default Location, with a Default
Module in the Default Location folder. The following illustration shows the PCB window
with a new project.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 84 of 205

Adding the MVI56E-MCM module to the project:

1 Use the mouse to select DEFAULT MODULE in the tree view, and then click the right
mouse button to open a shortcut menu.

2 On the shortcut menu, select CHOOSE MODULE TYPE. This action opens the Choose
Module Type dialog box.

3 In the Product Line Filter area of the dialog box, select MVI56E. In the Select Module
Type dropdown list, select MVI56E-MCM, and then click OK to save your settings
and return to the ProSoft Configuration Builder window.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 85 of 205

5.4.3 Assigning an IP Address in the Project

In this step, you assign an IP address for the MVI56E-MCM module using ProSoft
Configuration Builder. This becomes the permanent IP address for the module after you
download the configuration to the module (refer to Downloading the Project to the
Module (page 100).

The module’s default IP address is 192.168.0.250.

1 Determine the network settings for your module, with the help of your network
administrator if necessary. You will need the following information:

o IP address (fixed IP required) _____ . _____ . _____ . _____
o Subnet mask _____ . _____ . _____ . _____
o Gateway address _____ . _____ . _____ . _____

Note: The gateway address is optional, and is not required for networks that do not use a default gateway.

2 Start ProSoft Configuration Builder.
3 Select the MVI56E-MCM icon, and then click the [+] symbol to expand the MVI56E-

MCM tree.
4 Right-click ETHERNET CONFIGURATION to open the shortcut menu.

5 On the shortcut menu, select CONFIGURE. This opens the EDIT-WATTCP dialog
box.

6 Use this dialog box to enter the MVI56E-MCM module’s permanent IP Address
(MY_IP), subnet mask (NETMASK) and default gateway (GATEWAY).

7 Click OK to save the updated Ethernet configuration in the project.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 86 of 205

5.5 Connecting Your PC to the Module

5.5.1 Download the IP Address through CIPconnect

You can use CIPconnect® to connect a PC to the ProSoft Technology MVI56E-MCM
module over Ethernet using Rockwell Automation’s 1756-ENBT EtherNet/IP® module.
This allows you to configure the MVI56E-MCM network settings and view module
diagnostics from a PC. RSLinx is not required when you use CIPconnect. The following
information is needed:

• The IP addresses and slot numbers of any 1756-ENBT modules in the path

• The slot number of the MVI56E-MCM in the destination ControlLogix chassis (the
last ENBTx and chassis in the path).

If you do not have this information, you can still assign the IP address to the module
(refer to Assigning a Temporary IP Address (page 97).

To use CIPconnect:

1 In the tree view in ProSoft Configuration Builder, right-click the MVI56E-MCM icon to
open a shortcut menu.

2 On the shortcut menu, choose DIAGNOSTICS.

3 In the Diagnostics window, click the SET UP CONNECTION button.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 87 of 205

4 In the Select Connection Type dropdown list, choose 1756-ENBT. The default path
appears in the text box, as shown in the following illustration.

5 Click CIP PATH EDIT to open the CIPconnect Path Editor dialog box.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 88 of 205

The CIPconnect Path Editor allows you to define the path between the PC and the
MVI56E-MCM module. The first connection from the PC is always a 1756-ENBT
(EtherNet/IP) module.

Each row corresponds to a physical rack in the CIP path.

• If the MVI56E-MCM module is located in the same rack as the first 1756-ENBT
module, select RACK NO. 1 and configure the associated parameters.

• If the MVI56E-MCM is available in a remote rack (accessible through ControlNet or
Ethernet/IP), include all racks (by using the ADD RACK button).

Parameter Description

Source Module Source module type. This field is automatically selected
depending on the destination module of the last rack
(1756-CNB or 1756-ENBT).

Source Module IP Address IP address of the source module (only applicable for
1756-ENBT)

Source Module Node Address Node address of the source module (only applicable for
1756-CNB)

Destination Module Select the destination module associated to the source module
in the rack. The connection between the source and destination
modules is performed through the backplane.

Destination Module Slot Number The slot number where the destination MVI56E module is
located.

To use the CIPconnect Path Editor:

1 Configure the path between the 1756-ENBT connected to your PC and the MVI56E-
MCM module.

o If the module is located in a remote rack, add more racks to configure the full
path.

o The path can only contain ControlNet or Ethernet/IP networks.
o The maximum number of supported racks is six.

2 Click CONSTRUCT CIP PATH to build the path in text format.
3 Click OK to confirm the configured path.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 89 of 205

Example 1: Local Rack Application

For this example, the MVI56E-MCM module is located in the same rack as the 1756-
ENBT that is connected to the PC.

Ethernet

Rack 1

MVI56E Module 1756-ENBT

0 1 2 3

Rack 1

Slot Module Network Address

0 ControlLogix Processor -

1 Any -

2 MVI56E-MCM -

3 1756-ENBT IP=192.168.0.100

1 In ProSoft Configuration Builder, right-click the MVI56E-MCM icon to open a shortcut
menu.

2 On the shortcut menu, choose DIAGNOSTICS.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 90 of 205

3 In the Diagnostics window, click the SET UP CONNECTION button.

4 In the Select Connection Type dropdown list, choose 1756-ENBT. The default path
appears in the text box, as shown in the following illustration.

5 Configure the path as shown in the following illustration, and click CONSTRUCT CIP

PATH to build the path in text format.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 91 of 205

6 Click OK to close the CIPconnect Path Editor and return to the Connection Setup

dialog box.
7 Check the new path in the Connection Setup dialog box.

8 Click TEST CONNECTION to verify that the physical path is available. The following
message should be displayed upon success.

9 Click OK to close the Test Connection pop-up and then click CONNECT to close the
Connection Set up dialog box. The Diagnostics menu is now connected through
CIPconnect.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 92 of 205

Example 2: Remote Rack Application

For this example, the MVI56E-MCM module is located in a remote rack accessible
through ControlNet, as shown in the following illustration.

Ethernet

Rack 1

0 1 2 3

ControlNet

0 1 2 3 4 5 6

Rack 2

1756-ENBT1756-CNB

1756-CNB MVI56E Module

Rack 1

Slot Module Network Address

0 ControlLogix Processor -

1 1756-CNB Node = 1

2 1756-ENBT IP = 192.168.0.100

3 Any -

Rack 2

Slot Module Network Address

0 Any -

1 Any -

2 Any -

3 Any -

4 Any -

5 1756-CNB Node = 2

6 MVI56E-MCM -

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 93 of 205

1 In ProSoft Configuration Builder, right-click the MVI56E-MCM icon to open a shortcut
menu.

2 On the shortcut menu, choose DIAGNOSTICS.

3 In the Diagnostics window, click the SET UP CONNECTION button.

4 In the Select Connection Type dropdown list, choose 1756-ENBT. The default path
appears in the text box, as shown in the following illustration.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 94 of 205

5 Configure the path as shown in the following illustration, and click CONSTRUCT CIP

PATH to build the path in text format.

6 Click OK to close the CIPconnect Path Editor and return to the Connection Setup

dialog box.
7 Check the new path in the Connection Setup dialog box.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 95 of 205

8 Click TEST CONNECTION to verify that the physical path is available. The following
message should be displayed upon success.

9 Click OK to close the Test Connection pop-up and then click CONNECT to close the
Connection Set up dialog box. The Diagnostics menu is now connected through
CIPconnect.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 96 of 205

5.5.2 Using RSWho to Connect to the Module

RSLinx must be installed on your PC to use this feature. You also need an ENBT module set up in the rack.
For information on setting up the ENBT module, see Using CIPconnect to Connect to the Module.

1 In the tree view in ProSoft Configuration Builder, right-click the MVI56E-MCM
module.

2 From the shortcut menu, choose DOWNLOAD FROM PC TO DEVICE.
3 In the Download dialog box, choose 1756 ENBT from the Select Connection Type

dropdown box.

4 Click RSWHO to display modules on the network. The MVI56E-MCM module will
automatically be identified on the network.

5 Select the module, and then click OK.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 97 of 205

5.5.3 Connecting Your PC to the Module's Ethernet Port

With the module securely mounted, connect one end of the Ethernet cable to the CONFIG

(E1) Port, and the other end to an Ethernet hub or switch accessible from the same
network as your PC. Or, you can connect directly from the Ethernet Port on your PC to
the CONFIG (E1) Port on the module.

Assigning a Temporary IP Address

This procedure assigns a temporary IP address so that you can use the ProSoft
Configuration Builder to download a configuration file containing the permanent IP
address.

Important: ProSoft Configuration Builder locates MVI56E-MCM modules through UDP broadcast
messages. These messages may be blocked by routers or layer 3 switches. In that case, ProSoft Discovery
Service will be unable to locate the modules.

To use ProSoft Configuration Builder, arrange the Ethernet connection so that there is no router/ layer 3
switch between the computer and the module OR reconfigure the router/ layer 3 switch to allow routing of
the UDP broadcast messages.

1 In the tree view in ProSoft Configuration Builder, select the MVI56E-MCM module.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 98 of 205

2 Click the right mouse button to open a shortcut menu. On the shortcut menu, choose
DIAGNOSTICS.

3 In the Diagnostics window, click the SET UP CONNECTION button.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 99 of 205

4 In the Connection Setup dialog box, click the BROWSE DEVICE(S) button to open the
ProSoft Discovery Service. Right-click the module icon, and then choose ASSIGN

TEMPORARY IP.

5 The module’s default IP address is usually 192.168.0.250. Choose an unused IP
within your subnet, and then click OK.

Important: The temporary IP address is only valid until the next time the module is initialized. For
information on how to set the module’s permanent IP address, see Assigning an IP Address in the
Project (page 84).

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 100 of 205

6 Close the ProSoft Discovery Service window. Enter the temporary IP in the Ethernet
address field of the Connection Setup dialog box, then click the TEST CONNECTION

button to verify that the module is accessible with the current settings.

7 If the Test Connection is successful, click CONNECT. The Diagnostics menu displays
in the Diagnostics window.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 101 of 205

5.6 Downloading the Project to the Module

Note: For alternative methods of connecting to the module with your PC, refer to Connecting Your PC to the
Module (page 86).

In order for the module to use the settings you configured, you must download (copy) the
updated Project file from your PC to the module.

1 In the tree view in ProSoft Configuration Builder, right-click the MVI56E-MCM icon to
open a shortcut menu.

2 Choose DOWNLOAD FROM PC TO DEVICE. This opens the Download dialog box.
3 In the Download dialog box, choose the connection type in the Select Connection

Type dropdown box:

o Choose ETHERNET if you are connecting to the module through the Ethernet
cable.

o Choose 1756 ENBT if you are connecting to the module through CIPconnect or
RSWho. Refer to Connecting Your PC to the Module (page 86) for more
information.

Note: If you connected to the module using an Ethernet cable and set a temporary IP address, the
Ethernet address field contains that temporary IP address. ProSoft Configuration Builder uses this
temporary IP address to connect to the module.

4 Click TEST CONNECTION to verify that the IP address allows access to the module.
5 If the connection succeeds, click DOWNLOAD to transfer the Ethernet configuration to

the module.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 102 of 205

If the Test Connection procedure fails, you will see an error message. To correct the
error:

1 Click OK to dismiss the error message.
2 In the Download dialog box, click BROWSE DEVICE(S) to open ProSoft Discovery

Service.

3 Select the module, and then click the right mouse button to open a shortcut menu.
On the shortcut menu, choose SELECT FOR PCB.

4 Close ProSoft Discovery Service.
5 Click DOWNLOAD to transfer the configuration to the module.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 103 of 205

5.7 Using the Diagnostics Menu in ProSoft Configuration Builder

The Diagnostics menu, available through the Ethernet configuration port for this module,
is arranged as a tree structure, with the Main menu at the top of the tree, and one or
more submenus for each menu command. The first menu you see when you connect to
the module is the Main menu.

Tip: You can have a ProSoft Configuration Builder Diagnostics window open for more than one module at a
time.

To connect to the module’s Configuration/Debug Ethernet port:

1 In ProSoft Configuration Builder, select the module, and then click the right mouse
button to open a shortcut menu.

2 On the shortcut menu, choose DIAGNOSTICS.

3 In the Diagnostics window, click the SET UP CONNECTION button.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 104 of 205

4 In the Connection Setup dialog box, click the TEST CONNECTION button to verify that
the module is accessible with the current settings.

You can also use CIPconnect® to connect to the module through a 1756-ENBT card
by choosing 1756-ENBT in the SELECT CONNECTION TYPE list Refer to Using
CIPconnect to Connect to the Module for information on how to construct a CIP path.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 105 of 205

5 If the Test Connection is successful, click CONNECT to display the Diagnostics menu
in the Diagnostics Window.

If PCB is unable to connect to the module:

1 Click the BROWSE DEVICE(S) button to open the ProSoft Discovery Service. Select
the module, then right-click and choose SELECT FOR PCB.

2 Close ProSoft Discovery Service, and click the CONNECT button again.
3 If these troubleshooting steps fail, verify that the Ethernet cable is connected

properly between your computer and the module, either through a hub or switch
(using the grey cable) or directly between your computer and the module (using the
red cable).

If you are still not able to establish a connection, contact ProSoft Technology for
assistance.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 106 of 205

5.7.1 The Diagnostics Menu

The Diagnostics menu, available through the Ethernet configuration port for this module,
is arranged as a tree structure, with the Main menu at the top of the tree, and one or
more submenus for each menu command. The first menu you see when you connect to
the module is the Main menu.

5.7.2 Monitoring Backplane Information

Use the BACKPLANE menu to view the backplane status information for the MVI56E-
MCM module.

Backplane Configuration

Click Config to view current backplane configuration settings, including

• Read Start

• Read Count

• Write Start

• Write Count

• Error Status Pointer

The settings on this menu correspond with the MCM.CONFIG.MODDEF controller tags in
the ModDef Settings (page 60).

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 107 of 205

Backplane Status

Use the Status menu to view current backplane status, including

• Number of retries

• Backplane status

• Fail count

• Number of words read

• Number of words written

• Number of words parsed

• Error count

• Event count

• Command count

During normal operation, the read, write, and parsing values should increment
continuously, while the error value should not increment.

The status values on this menu correspond with members of the MVI56E-MCM Status
Data Definition (page 160).

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 108 of 205

5.7.3 Monitoring Database Information

Use the Database menu to view the contents of the MVI56E-MCM module’s internal
database. The data locations on this menu corresponds with the MVI56E-MCM
Database Definition (page 149).

You can view data in the following formats:

ASCII

Decimal

Float

Hexadecimal

Use the scroll bar on the right edge of the window to view each page (100 words) of
data.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 109 of 205

5.7.4 Monitoring General Information

Use the General Menu to view module version information.

The values on this menu correspond with the contents of the module’s Misc. Status
(page 158).

5.7.5 Monitoring Modbus Port Information

Use the Modbus Port 1 and Modbus Port 2 menus to view the information for each of the
MVI56E-MCM module’s Modbus application ports.

Port Configuration

Use the Port Configuration menu to view configuration settings for Modbus Port 1 and
Modbus Port 2. The values on this menu correspond with the controller tags
MCM.CONFIG.Port1 and MCMPort (page 164).

Master Command List

Use the Master Command List menu to view the command list settings for Modbus Port
1 and Modbus Port 2. The values on this menu correspond with the controller tags
MCM.CONFIG.PORT1MASTERCMD and MCM.CONFIG.Port2MasterCmd.

Use the scroll bar on the right edge of the window to view each Modbus Master
command.

Note: The Master Command List is available only if the port is configured as a Modbus Master.

Master Command Status

Use the Master Command Status menu to view Master command status for Modbus
Port 1 and Modbus Port 2.

A zero indicates no error.

A non-zero value indicates an error. Refer to Command Error Codes (page 72) for an
explanation of each value.

Slave Status List

Use the Slave Status List menu to view the status of each Slave connected to the
Modbus Master port.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 110 of 205

Slaves attached to the Master Port can have one of the following states:

State Description

0 The Slave is inactive and not defined in the command list for the Master Port.

1 The Slave is actively being polled or controlled by the Master Port. This does not
indicate that the Slave has responded to this message.

2 The Master Port has failed to communicate with the Slave device. Communications
with the Slave is suspended for a user defined period based on the scanning of the
command list.

3 Communications with the Slave has been disabled by the ladder logic. No
communication will occur with the Slave until this state is cleared by the ladder
logic.

Refer to Slave Status Blocks (3000 to 3003 or 3100 to 3103) (page 127) for more
information.

Port Status

Use the Port Status menu to view status for Modbus Port 1 and Modbus Port 2. During
normal operation, the number of requests and responses should increment, while the
number of errors should not change.

5.7.6 Data Analyzer

The Data Analyzer mode allows you to view all bytes of data transferred on each port.
Both the transmitted and received data bytes are displayed. Use of this feature is limited
without a thorough understanding of the protocol.

Configuring the Data Analyzer

Select Timing Interval

Time Ticks help you visualize how much data is transmitted on the port for a specified
interval. Select the interval to display, or choose No Ticks to turn off timing marks.

Select the Communication Port to Analyze

You can view incoming and outgoing data for one application port at a time. Choose the
application port to analyze.

Select the Data Format

You can view incoming and outgoing data in Hexadecimal (HEX) or Alphanumeric
(ASCII) format.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 111 of 205

Starting the Data Analyzer

The following illustration shows an example of the Data Analyzer output.

The Data Analyzer can display the following special characters.

Character Definition

[] Data enclosed in these characters represent data received on the port.

< > Data enclosed in these characters represent data transmitted on the port.

<R+> These characters are inserted when the RTS line is driven high on the port.

<R-> These characters are inserted when the RTS line is dropped low on the port.

<CS> These characters are displayed when the CTS line is recognized high.

TT These characters are displayed when the "Time Tick" is set to any value other than
"No Ticks".

Stopping the Data Analyzer

Important: When in analyzer mode, program execution will slow down. Only use this tool during a
troubleshooting session. Before disconnecting from the Config/Debug port, please stop the data analyzer.
This action will allow the module to resume its normal high speed operating mode.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 112 of 205

Data Analyzer Tips

For most applications, HEX is the best format to view the data, and this does include
ASCII based messages (because some characters will not display in the Diagnostics
window, and by capturing the data in HEX, we can figure out what the corresponding
ASCII characters are supposed to be).

The Tick value is a timing mark. The module will print a _TT for every xx milliseconds of
no data on the line. Usually 10milliseconds is the best value to start with.

To save a capture file of your Diagnostics session

1 After you have selected the Port, Format, and Tick, we are now ready to start a
capture of this data.

2 When you have captured the data you want to save, click again to stop capturing
data.

You have now captured, and saved the file to your PC. This file can now be used in
analyzing the communications traffic on the line, and assist in determining
communication errors. The log file name is PCB-Log.txt, located in the root directory of
your hard drive (normally Drive C).

Now you have everything that shows up on the Diagnostics screen being logged to a file
called PCB-Log.txt. You can email this file to ProSoft Technical Support for help with
issues on the communications network.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 113 of 205

To begin the display of the communications data, start the Data Analyzer. When the
Data Analyzer is running, you should see something like this.

The <R+> means that the module is transitioning the communications line to a transmit
state.

All characters shown in <> brackets are characters being sent out by the module.

The <R-> shows when the module is done transmitting data, and is now ready to receive
information back.

And finally, all characters shown in the [] brackets is information being received from
another device by the module.

After taking a minute or two of traffic capture, stop the Data Analyzer.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 114 of 205

5.8 Reading Status Data from the Module

The MVI56E-MCM module returns a 33-word Status Data block that can be used to
determine the module’s operating status. This data is located in the module’s database
at registers 15270 to 15302 and at the location specified in the configuration. This data is
transferred to the ControlLogix processor continuously with each read block. For a
complete listing of the status data object, refer to MVI56E-MCM Status Data Definition
(page 160).

5.8.1 Viewing the Error Status Table

Command execution status and error codes for each individual command are stored in a
Master Command Status/Error List, held in the module’s internal memory. There are
several ways to view this data.

• View Command Status, Slave Status and Port Status in the Monitoring Modbus Port
Information (page 109).

• Configure the Command Error Pointer parameter (<CmdErrPtr>) to copy the
status/error values into the User Database area of module memory.

• Copy this table to a section of the ReadData area, where you can view it in the
<READDATAARRAY> tag array in the ControlLogix controller tag database. You can
use these values for communications status monitoring and alarming.

o <CMDERRPTR> = "MCM.CONFIG.PORTX.CMDERRPTR"
o <READDATAARRAY> = "MCM.DATA.READDATA[X]"

These variables would hold the literal tag names in the sample program or Add-On
Instruction. Use these variables to accommodate future ladder or tag changes while
maintaining backward compatibility.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 115 of 205

5.9 Configuration Error Codes

During module configuration download, the OK and APP LEDs will cycle through various
states. If the OK LED remains RED and the APP LED remains OFF or RED for a long
period of time, look at the configuration error words in the configuration request block.

The structure of the block is shown in the following table:

Offset Description Length

0 Reserved 1

1 9000 1

2 Module Configuration Errors 1

3 Port 1 Configuration Errors 1

4 Port 2 Configuration Errors 1

5 to 248 Spare 244

249 -2 or -3 1

The bits in each configuration word are shown in the following table. The module
configuration error word has the following definition:

Bit Description Value

0 Read block start value is greater than the database size. 0x0001

1 Read block start value is less than zero. 0x0002

2 Read block count value is less than zero. 0x0004

3 Read block count + start is greater than the database size. 0x0008

4 Write block start value is greater than the database size. 0x0010

5 Write block start value is less than zero. 0x0020

6 Write block count value is less than zero. 0x0040

7 Write block count + start is greater than the database size. 0x0080

8 0x0100

9 0x0200

10 0x0400

11 0x0800

12 0x1000

13 0x2000

14 0x4000

15 0x8000

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 116 of 205

The port configuration error words have the following definitions:

Bit Description Value

0 Type code is not valid. Enter a value from 0 (Master) to 1
(Slave).

0x0001

1 The float flag parameter is not valid. 0x0002

2 The float start parameter is not valid. 0x0004

3 The float offset parameter is not valid. 0x0008

4 Protocol parameter is not valid. 0x0010

5 Baud rate parameter is not valid. 0x0020

6 Parity parameter is not valid. 0x0040

7 Data bits parameter is not valid. 0x0080

8 Stop bits parameter is not valid. 0x0100

9 Slave ID is not valid. 0x0200

10 Input bit or word, output word and/or holding register
offset(s) are not valid.

0x0400

11 Command count parameter is not valid. 0x0800

12 Spare 0x1000

13 Spare 0x2000

14 Spare 0x4000

15 Spare 0x8000

Correct any invalid data in the configuration for proper module operation. When the
configuration contains a valid parameter set, all the bits in the configuration words will be
clear. This does not indicate that the configuration is valid for the user application. Make
sure each parameter is set correctly for the specific application.

Note: If the APP, BP ACT and OK LEDs blink at a rate of every one-second, this indicates a serious
problem with the module. Call ProSoft Technology Support to arrange for repairs.

MVI56E-MCM ♦ ControlLogix® Platform Diagnostics and Troubleshooting
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 117 of 205

5.10 Connect to the Module’s Webpage

The module's internal web server provides access to module status, diagnostics, and
firmware updates.

1 In ProSoft Discovery Service, select the module to configure, and then click the right
mouse button to open a shortcut menu.

2 On the shortcut menu, choose VIEW MODULE’S WEBPAGE.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 118 of 205

6 Reference

6.1 Product Specifications

The MVI56E Enhanced Modbus Master/Slave Communication Modules allow Rockwell
Automation® ControlLogix® processors to easily interface with devices using the Modbus
RTU/ASCII serial communications protocol.

The MVI56E-MCM and MVI56E-MCMXT act as input/output modules on the
ControlLogix backplane, making Modbus data appear as I/O data to the processor. Data
transfer to and from the processor is asynchronous from the communications on the
Modbus network. Two independently configurable serial ports can operate on the same
or different Modbus networks. Each port can be configured as a Modbus Master or
Slave, sharing the same user-controlled, 10,000-word database.

The two modules are functionally the same. The MVI56E-MCM is designed for standard
process applications. The MVI56E-MCMXT is designed for the Logix-XT™ control
platform, allowing it to operate in extreme environments. It can tolerate higher operating
temperatures, and it also has a conformal coating to protect it from harsh or caustic
conditions.

6.1.1 General Specifications

• Backward-compatible with previous MVI56-MCM version

• Single Slot - 1756 ControlLogix® backplane compatible

• 10/100 MB Ethernet port for network configuration and diagnostics with Auto Cable
Crossover Detection

• User-definable module data memory mapping of up to 10,000 16-bit registers

• CIPconnect®-enabled network diagnostics and monitoring using ControlLogix 1756-
ENxT modules and EtherNet/IP® pass-thru communications

• Sample Ladder Logic or Add-On Instruction (AOI) used for data transfers between
module and processor and for module configuration

• 4-character, scrolling, alphanumeric LED display of status and diagnostic data in
plain English

• ProSoft Discovery Service (PDS) software finds the module on the network and
assigns a temporary IP address to facilitate module access

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 119 of 205

6.1.2 General Specifications - Modbus Master/Slave

Specification Description

Communication
Parameters

Baud rate: 110 to 115K baud
Stop bits: 1 or 2
Data size: 7 or 8 bits
Parity: None, Even, Odd
RTS timing delays: 0 to 65535 milliseconds

Modbus Modes RTU mode (binary) with CRC-16
ASCII mode with LRC error checking

Floating-Point
Data

Floating-point data movement supported, including configurable
support for Enron, Daniel®, and other implementations

Modbus Function
Codes Supported

1: Read Coil Status
2: Read Input Status
3: Read Holding Registers
4: Read Input Registers
5: Force (Write) Single Coil
6: Preset (Write) Single
 Holding Register
8: Diagnostics (Slave Only,
 Responds to
 Subfunction 00)

15: Force(Write) Multiple Coils
16: Preset (Write) Multiple
 Holding Registers
17: Report Slave ID (Slave Only)
22: Mask Write Holding
 Register (Slave Only)
23: Read/Write Holding
 Registers (Slave Only)

6.1.3 Functional Specifications

The MVI56E-MCM will operate on a Local or Remote rack (For remote rack applications
with smaller data packet size please refer to the MVI56E-MCMR product)

• CIPconnect® enabled for module and network configuration using 1756-ENxT
module with EtherNet/IP pass-through communications

• Supports Enron version of Modbus protocol for floating-point data transactions

• 4-digit LED Display for English based status and diagnostics information

• PCB includes powerful Modbus network analyzer

• Error codes and port status data available in user data memory

Slave Specifications

The MVI56E-MCM module accepts Modbus function code commands of 1, 2, 3, 4, 5, 6,
8, 15, 16, 17, 22, and 23 from an attached Modbus Master unit. A port configured as a
Modbus Slave permits a remote Master to interact with all data contained in the module.
This data can be derived from other Modbus Slave devices on the network, through a
Master port, or from the ControlLogix processor.

Master Specifications

A port configured as a virtual Modbus Master device on the MVI56E-MCM module
actively issues Modbus commands to other nodes on the Modbus network. 325
commands are supported on each port. Additionally, the Master ports have an optimized
polling characteristic that polls slaves with communication problems less frequently. The
ControlLogix processor ladder logic can issue commands directly from ladder logic or
actively select commands from the command list to execute under ladder logic control.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 120 of 205

Note: To use up to 325 commands, your MVI56E-MCM module needs to have firmware version 3.01 or
higher, and your MVI56E-MCM Add-On Instruction needs to be version 2.8 or higher. Earlier versions
support up to 100 commands.

6.1.4 Hardware Specifications

General

Specification Description

Backplane Current Load 800 mA @ 5 VDC
3 mA @ 24 VDC

Operating Temperature 0°C to 60°C (32°F to 140°F)

Storage Temperature -40°C to 85°C (-40°F to 185°F)

Extreme/Harsh Environment MVI56E-MCMXT comes with conformal coating

Shock 30 g operational
50 g non-operational
Vibration: 5 g from 10 to 150 Hz

Relative Humidity 5% to 95% (without condensation)

LED Indicators Application Status (APP)
Module Status (OK)

4-Character, Scrolling, Alpha-
Numeric LED Display

Shows Module, Version, IP, Port Client/Server Setting, Port
Status, and Error Information

Communication Ethernet port

Ethernet Port 10/100 Base-T, RJ45 Connector, for CAT5 cable
Link and Activity LED indicators
Auto-crossover cable detection

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 121 of 205

6.2 Functional Overview

6.2.1 About the Modbus Protocol

Modbus is a widely-used protocol originally developed by Modicon in 1978. Since that
time, the protocol has been adopted as a standard throughout the automation industry.

The original Modbus specification uses a serial connection to communicate commands
and data between Master and Slave devices on a network. Later enhancements to the
protocol allow communication over other types of networks.

Modbus is a Master/Slave protocol. The Master establishes a connection to the remote
Slave. When the connection is established, the Master sends the Modbus commands to
the Slave. The MVI56E-MCM module can work as a Master and as a Slave.

The MVI56E-MCM module also works as an input/output module between itself and the
Rockwell Automation backplane and ControlLogix processor. The module uses an
internal database to pass data and commands between the processor and Master and
Slave devices on Modbus networks.

6.2.2 Backplane Data Transfer

The MVI56E-MCM module communicates directly over the ControlLogix backplane.
Data is paged between the module and the ControlLogix processor across the
backplane using the module's input and output images. The update frequency of the
images is determined by the scheduled scan rate defined by the user for the module and
the communication load on the module. Typical updates are in the range of 2 to 10
milliseconds.

This bi-directional transference of data is accomplished by the module filling in data in
the module's input image to send to the processor. Data in the input image is placed in
the Controller Tags in the processor by the ladder logic. The input image for the module
is set to 250 words. This large data area permits fast throughput of data between the
module and the processor.

The processor inserts data to the module's output image to transfer to the module. The
module's program extracts the data and places it in the module's internal database. The
output image for the module is set to 248 words. This large data area permits fast
throughput of data from the processor to the module.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 122 of 205

The following illustration shows the data transfer method used to move data between the
ControlLogix processor, the MVI56E-MCM module and the Modbus Network.

As shown in the illustration above, all data transferred between the module and the
processor over the backplane is through the input and output images. Ladder logic must
be written in the ControlLogix processor to interface the input and output image data with
data defined in the Controller Tags. All data used by the module is stored in its internal
database. This database is defined as a virtual Modbus data table with addresses from 0
to 15999.

The database is translated into a Modbus data table, according to which a Modbus
command is received or sent. Refer to Modbus Memory Map (page 63) for more
information.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 123 of 205

The following illustration shows the layout of the module’s internal database structure:

10,000 registers for user data 0

 Register Data

 9999

6000 words of configuration and
status data

10000

 Status and Config

 15999

Data contained in this database is paged through the input and output images by
coordination of the ControlLogix ladder logic and the MVI56E-MCM module's program.
Up to 248 words of data can be transferred from the module to the processor at a time.
Up to 247 words of data can be transferred from the processor to the module. Each
image has a defined structure depending on the data content and the function of the
data transfer as defined below.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 124 of 205

6.2.3 Normal Data Transfer

Normal data transfer includes the paging of the user data found in the module’s internal
database in registers 0 to 9999 and the status data. These data are transferred through
read (input image) and write (output image) blocks. Refer to Using the Sample Program
in an Existing Application (page 198) for a description of the data objects used with the
blocks and the ladder logic required. The structure and function of each block is
discussed below.

Read Block

These blocks of data transfer information from the module to the ControlLogix processor.
The following table describes the structure of the input image.

Read Block from Module to Processor

Word Offset Description Length

0 Reserved 1

1 Write Block ID: -1 to 50 1

2 to 201 Read Data 200

202 Program Scan Counter 1

203 to 204 Product Code 2

205 to 206 Product Version 2

207 to 208 Operating System 2

209 to 210 Run Number 2

211 to 217 Port 1 Error Status 7

218 to 224 Port 2 Error Status 7

225 to 230 Data Transfer Status 6

231 Port 1 Current Error/Index 1

232 Port 1 Last Error/Index 1

233 Port 2 Current Error/Index 1

234 Port 2 Last Error/Index 1

235 to 248 Spare 14

249 Read Block ID 1

The Read Block ID is an index value used to determine the location of where the data
will be placed in the ControlLogix processor controller tag array of module read data.
Each transfer can move up to 200 words (block offsets 2 to 201) of data. In addition to
moving user data, the block also contains status data for the module. This last set of
data is transferred with each new block of data and is used for high-speed data
movement.

The Write Block ID associated with the block requests data from the ControlLogix
processor. Under normal program operation, the module sequentially sends read blocks
and requests write blocks. For example, if the application uses three read and two write
blocks, the sequence will be as follows:

 R1W1→R2W2→R3W1→R1W2→R2W1→R3W2→R1W1→

This sequence will continue until interrupted by other write block numbers sent by the
controller or by a command request from a node on the Modbus network or operator
control through the module’s Configuration/Debug port.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 125 of 205

Write Block

These blocks of data transfer information from the ControlLogix processor to the module.
The following table describes the structure of the output image.

Write Block from Processor to Module

Word Offset Description Length

0 Write Block ID: -1 to 50 1

1 to 200 Write Data 200

201 to 247 Spare 47

The Write Block ID is an index value used to determine the location in the module’s
database where the data will be placed. Each transfer can move up to 200 words (block
offsets 1 to 200) of data.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 126 of 205

6.2.4 Special Function Blocks

Special function blocks are optional blocks used to control the module or request special
data from the module. The current version of the software supports the following special
function blocks:

• Event Command

• Slave Status

• Command Control

• Module Configuration

• Master Command Data List

• Pass-Through

• Warm Boot

• Cold Boot

• Write Configuration

Event Command Blocks (1000 to 1255 or 2000 to 2255)

Event Command blocks send Modbus commands directly from the ladder logic to one of
the Master Ports. The following table describes the format for these blocks.

Block Request from Processor to Module

Word Offset Description Length

0 1000 to 1255 or 2000 to 2255 1

1 Internal DB Address 1

2 Point Count 1

3 Swap Code 1

4 Modbus Function Code 1

5 Device Database Address 1

6 to 247 Spare 242

The block number defines the Modbus Port that will send the command, and the Slave
node that will respond to the command. Blocks in the 1000 range are directed to Modbus
Port 1, and blocks in the 2000 range are directed to Modbus Port 2. The Slave address
is represented in the block number in the range of 0 to 255. The sum of these two values
determines the block number. The other parameters passed with the block are used to
construct the command.

• The Internal DB Address parameter specifies the module’s database location to
associate with the command

• The Point Count parameter defines the number of points or registers for the
command

• The Swap Code is used with Modbus function 3 requests to change the word or byte
order

• The Modbus Function Code has one of the following values 1, 2, 3, 4, 5, 6, 15, or
16

• The Device Database Address is the Modbus register or point in the remote Slave
device to be associated with the command

When the command receives the block, it will process it and place it in the command
queue. The module will respond to each command block with a read block. The following
table describes the format of this block.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 127 of 205

Block Response from Module to Processor

Word Offset Description Length

0 Reserved 1

1 Write Block ID 1

2 0 = Fail, 1 = Success 1

3 to 248 Spare 246

249 1000 to 1255 or 2000 to 2255 1

Word two of the block can be used by the ladder logic to determine if the command was
added to the command queue of the module. The command will only fail if the command
queue for the port is full (325 commands for each queue for modules with firmware
version 3.01 or higher and Add-on-Instruction version 2.8 or higher).

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 128 of 205

Slave Status Blocks (3000 to 3003 or 3100 to 3103)

Slave status blocks send status information of each Slave device on a Master Port.
Slaves attached to the Master Port can have one of the following states:

0 The Slave is inactive and not defined in the command list for the Master Port.

1 The Slave is actively being polled or controlled by the Master Port. This does not
indicate that the Slave has responded to this message.

2 The Master Port has failed to communicate with the Slave device. Communications
with the Slave is suspended for a user defined period based on the scanning of the
command list.

3 Communications with the Slave has been disabled by the ladder logic. No
communication will occur with the Slave until this state is cleared by the ladder
logic.

Slaves are defined to the system when the module initializes the Master command list.
Each Slave defined will be set to a state of one in this initial step. If the Master Port fails
to communicate with a Slave device (retry count expired on a command), the Master will
set the state of the Slave to a value of 2 in the status table. This suspends
communication with the Slave device for a user specified scan count (ERRORDELAYCNTR

value in the MCMPORT object for each port). Each time a command in the list is scanned
that has the address of a suspended Slave, the delay counter value will be
decremented. When the value reaches zero, the Slave state will be set to one. This will
enable polling of the Slave.

Block ID Description

3002 Request for first 128 Slave status values for Modbus Port 1

3003 Request for last 128 Slave status values for Modbus Port 1

3102 Request for first 128 Slave status values for Modbus Port 2

3103 Request for last 128 Slave status values for Modbus Port 2

The following table describes the format of these blocks.

Block Request from Processor to Module

Word Offset Description Length

0 3002 to 3003 or 3102 to 3103 1

1 to 247 Spare 246

The module will recognize the request by receiving the special write block code and
respond with a read block with the following format:

Block Response from Module to Processor

Word Offset Description Length

0 Reserved 1

1 Write Block ID 1

2 to 129 Slave Poll Status Data 128

130 to 248 Spare 119

249 3002 to 3003 or 3102 to 3103 1

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 129 of 205

Ladder logic can be written to override the value in the Slave status table. It can disable
(state value of 3) by sending a special block of data from the processor to the Slave.
Port 1 Slaves are disabled using block 3000, and Port 2 Slaves are disabled using block
3100. Each block contains the Slave node addresses to disable. The following table
describes the structure of the block.

Block Request from Processor to Module

Word Offset Description Length

0 3000 or 3100 1

1 Number of Slaves in Block 1

2 to 201 Slave indexes 200

202 to 247 Spare 46

The module will respond with a block with the same identification code received and
indicate the number of Slaves acted on with the block. The following table describes the
format of the response block.

Block Response from Module to Processor

Word Offset Description Length

0 Reserved 1

1 Write Block ID 1

2 Number of Slaves processed 1

3 to 248 Spare 246

249 3000 or 3100 1

Ladder logic can be written to override the value in the Slave status table to enable the
Slave (state value of 1) by sending a special block. Port 1 Slaves are enabled using
block 3001, and Port 2 Slaves are enabled using block 3101. Each block contains the
Slave node addresses to enable. The following table describes the format for this block.

Block Request from Processor to Module

Word Offset Description Length

0 3001 or 3101 1

1 Number of Slaves in Block 1

2 to 201 Slave indexes 200

202 to 247 Spare 46

The module will respond with a block with the same identification code received and
indicate the number of Slaves acted on with the block. The following table describes the
format of this response block.

Block Response from Module to Processor

Word Offset Description Length

0 Reserved 1

1 Write Block ID 1

2 Number of Slaves processed 1

3 to 248 Spare 246

249 3001 or 3101 1

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 130 of 205

Command Control Blocks (5001 to 5006 or 5101 to 5106)

Command Control blocks place commands in the command list into the command
queue. Each port has a command queue of up to 325 commands (for modules with
firmware version 3.01 or higher and Add-on-Instruction version 2.8 or higher). The
module services commands in the queue before the Master command list. This gives
high priority to commands in the queue. Commands placed in the queue through this
mechanism must be defined in the Master command list. Under normal command list
execution, the module will only execute commands with the Enable parameter set to one
or two. If the value is set to zero, the command is skipped. Commands may be placed in
the command list with an Enable parameter set to zero. These commands can then be
executed using the Command Control blocks.

One to six commands can be placed in the command queue with a single request. The
following table describes the format for this block.

Block Request from Processor to Module

Word Offset Description Length

0 5001 to 5006 or 5101 to 5106 1

1 Command index (MCM.CONFIG.PORTXMASTERCMD [command
index value])

1

2 Command index (MCM.CONFIG.PORTXMASTERCMD [command
index value])

1

3 Command index (MCM.CONFIG.PORTXMASTERCMD [command
index value])

1

4 Command index (MCM.CONFIG.PORTXMASTERCMD [command
index value])

1

5 Command index (MCM.CONFIG.PORTXMASTERCMD [command
index value])

1

6 Command index (MCM.CONFIG.PORTXMASTERCMD [command
index value])

1

7 to 247 Spare 241

Blocks in the range of 5001 to 5006 are used for Modbus Port 1, and blocks in the range
of 5101 to 5106 are used for Modbus Port 2. The last digit in the block code defines the
number of commands to process in the block. For example, a block code of 5003
contains 3 command indexes for Modbus Port 1. The Command index parameters in the
block have a range of 0 to 99 and correspond to the Master command list entries.

The module responds to a Command Control block with a block containing the number
of commands added to the command queue for the port. The following table describes
the format for this block.

Block Response from Module to Processor

Word Offset Description Length

0 Reserved 1

1 Write Block ID 1

2 Number of commands added to command queue 1

3 to 248 Spare 246

249 5000 to 5006 or 5100 to 5106 1

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 131 of 205

Configuration Data Transfer

When the module performs a restart operation, it will request configuration information
from the ControlLogix processor. This data is transferred to the module in specially
formatted write blocks (output image). The module will poll for each block by setting the
required write block number in a read block (input image). Refer to Using the Sample
Program in an Existing Application (page 198) for a description of the data objects used
with the blocks and the ladder logic required.

Module Configuration Block (9000)

On boot-up, the module sends a request for configuration information to the processor.
The request block has a Block ID of 9000.

Block Request from Module to Processor

Word Offset Description Length

0 Reserved 1

1 9000 1

2 to 248 Spare 247

249 9000 1

The processor responds with a block of general configuration information to the module.

Configuration Block from Processor to Module

Word Offset Description Length

0 9000 1

1 to 6 Backplane Setup 6

7 to 31 Port 1 Configuration 25

32 to 56 Port 2 Configuration 25

57 to 59 Port 1 Aux. Configuration 3

60 to 62 Port 2 Aux. Configuration 3

63 to 247 Spare 185

If the configuration information is valid, the module commences normal data transfer
operation. If there are errors in the configuration, the module sends the processor a read
block with configuration error codes.

Block Response from Module to Processor

Word Offset Description Length

0 Reserved 1

1 9000 1

2 Module Configuration Error Code 1

3 Port 1 Configuration Error Code 1

4 Port 2 Configuration Error Code 1

5 to 248 Spare 244

249 -2 or -3 1

Any errors must be corrected before the module will start operating.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 132 of 205

Master Command Data List (6000 to 6012 or 6100 to 6112)

Each port on the module can be configured as a Modbus Master device containing its
own list of 325 commands (for modules with firmware version 3.01 or higher and Add-
on-Instruction version 2.8 or higher). The commands are read from the processor using
the following Write Block IDs: Modbus Port 1: 6000 to 6012, and Modbus Port 2: 6100 to
6112. The module will sequentially poll for each block from the processor. Ladder logic
must handle all of the data transfers. The following table describes the structure of each
block.

Configuration Block from Processor to Module

Word Offset Description Length

0 6000 to 6012 and 6100 to 6112 1

1 to 8 Command Definition 8

9 to 16 Command Definition 8

17 to 24 Command Definition 8

25 to 32 Command Definition 8

33 to 40 Command Definition 8

41 to 48 Command Definition 8

49 to 56 Command Definition 8

57 to 64 Command Definition 8

65 to 72 Command Definition 8

73 to 80 Command Definition 8

81 to 88 Command Definition 8

89 to 96 Command Definition 8

97 to 104 Command Definition 8

105 to 112 Command Definition 8

113 to 120 Command Definition 8

121 to 128 Command Definition 8

129 to 136 Command Definition 8

137 to 144 Command Definition 8

145 to 152 Command Definition 8

153 to 160 Command Definition 8

161 to 168 Command Definition 8

169 to 176 Command Definition 8

177 to 184 Command Definition 8

185 to 192 Command Definition 8

193 to 200 Command Definition 8

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 133 of 205

Pass-Through Blocks

The Pass-through Mode allows a Modbus Slave port to pass write commands received
from a host directly across the backplane to the ControlLogix processor for handling by
ladder logic. Although this feature requires more ladder logic in order to implement a
solution, there are certain situations where this functionality can be useful. Some of
these situations include:

1 When the slave needs to know when it has been written to
2 When the acceptance of data may require some conditioning
3 When the host’s write data registers must overlap the read register space

Unformatted Pass-Through Blocks (9996)

If one or more of the Slave Ports on the module are configured for the unformatted pass-
through mode, the module will pass blocks with identification codes of 9996 to the
processor for each received write command. Any Modbus function 5, 6, 15, and 16
commands will be passed from the port to the processor using this block identification
number. Ladder logic must handle the receipt of all Modbus write functions to the
processor and to respond as expected to commands issued by the remote Modbus
Master device. The structure of the unformatted Pass-through block is shown in the
following table.

Pass-Through Block 9996 from Module to Processor

Word Offset Description Length

0 0 1

1 9996 1

2 Number of bytes in Modbus message 1

3 Data address 1

4 to 248 Modbus message received 245

249 9996 1

The ladder logic will be responsible for parsing and copying the received message and
performing the proper control operation as expected by the Master device. The
processor must then respond to the Pass-through block with a write block with the
following format.

Response Block 9996 from Processor to Module

Word Offset Description Length

0 9996 1

1 to 247 Spare 247

This will inform the module that the command has been processed and can be cleared
from the pass-through queue.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 134 of 205

Formatted Pass-Through Blocks (9956 to 9959)

If one or more of the Slave Ports on the module are configured for the Formatted Pass-
through mode, the module will pass blocks with identification codes of 9956 to 9959 to
the processor for each received write command. Any Modbus function 5, 6, 15 or 16
commands will be passed from the port to the processor using these block identification
numbers. Ladder logic must handle the receipt of all Modbus write functions to the
processor and must respond as expected to commands issued by the remote Modbus
Master device. The structure of these formatted Pass-through blocks is shown in the
following tables:

Function 5

Pass-Through Block 9958 from Module to Processor

Word Offset Description Length

0 0 1

1 9958 1

2 1 1

3 Bit Address 1

4 to 248 Modbus data received 245

249 9958 1

The ladder logic will be responsible for parsing and copying the received message and
performing the proper control operation as expected by the Master device. The
processor must then respond to the Pass-through block with a write block with the
following format.

Response Block 9958 from Processor to Module

Word Offset Description Length

0 9958 1

1 to 247 Spare 247

This will inform the module that the command has been processed and can be cleared
from the pass-through queue.

Function 6 and 16

Pass-Through Blocks 9956 or 9957 from Module to Processor

Offset Description Length

0 0 1

1 9956/9957 (Floating-point) 1

2 Number of data words 1

3 Data Address 1

4 to 248 Data 245

249 9956/9957 1

The ladder logic will be responsible for parsing and copying the received message and
performing the proper control operation as expected by the Master device. The
processor must then respond to the Pass-through block with a write block with the
following format.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 135 of 205

Response Blocks 9956 or 9957 from Processor to Module

Offset Description Length

0 9956/9957 1

1 to 247 Spare 247

This will inform the module that the command has been processed and can be cleared
from the pass-through queue.

Function 15

When the module receives a function code 15 while in pass-through mode, the module
will write the data using block ID 9959 for multiple-bit data. First the bit mask clears the
bits to be updated. This is accomplished by ANDing the inverted mask with the existing
data. Next the new data ANDed with the mask is ORed with the existing data. This
protects the other bits in the INT registers from being affected.

Pass-Through Block 9959 from Module to Processor

Word Offset Description Length

0 0 1

1 9959 1

2 Number of Words 1

3 Word Address 1

4 to 53 Data 50

54 to 103 Mask 50

104 to 248 Spare 145

249 9959 1

The ladder logic will be responsible for parsing and copying the received message and
performing the proper control operation as expected by the Master device. The
processor must then respond to the Pass-through block with a write block with the
following format.

Response Block 9959 from Processor to Module

Word Offset Description Length

0 9959 1

1 to 247 Spare 247

This will inform the module that the command has been processed and can be cleared
from the pass-through queue.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 136 of 205

Warm Boot Block (9998)

This block is sent from the ControlLogix processor to the module (output image) when
the module is required to perform a warm-boot (software reset) operation. This block is
commonly sent to the module any time configuration data modifications are made in the
controller tags data area. This will cause the module to read the new configuration
information and to restart. The following table describes the format of the Warm Boot
block.

Block Request from Processor to Module

Word Offset Description Length

0 9998 1

1 to 247 Spare 247

Cold Boot Block (9999)

This block is sent from the ControlLogix processor to the module (output image) when
the module is required to perform the cold boot (hardware reset) operation. This block is
sent to the module when a hardware problem is detected by the ladder logic that
requires a hardware reset. The following table describes the format of the Cold Boot
block.

Block Request from Processor to Module

Word Offset Description Length

0 9999 1

1 to 247 Spare 247

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 137 of 205

MVI56E-MCM Remote Master Control

The MVI56E-MCM can receive special function block codes from a remote Master on
the network to control the module, using specific values written to regions of this block.
The module can respond to the following requests:

• Write configuration to processor

• Warm boot

• Cold boot

The remote Master controls the module by writing one of the following values to register
15400 (Modbus address 55401):

Block ID Description

9997 Write configuration in database to the processor and warm boot the module.

9998 Warm boot the module.

9999 Cold boot the module.

The control register is reset to 0 after the operation is executed with the exception of the
9997 command. If the module fails to successfully transfer the configuration to the
processor, it will place one of the following error codes in the control register:

Error Code Description

0 No error, transfer successful

-1 Error transferring general configuration information.

-2 Error transferring Modbus Port 1 Master command list

-3 Error transferring Modbus Port 2 Master command list

Ladder logic must handle the 9997 command. No ladder logic is required for the warm or
cold boot commands.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 138 of 205

Write Configuration Block (-9000 and -6000 to -6003 or -6100 to -6103)

This special function is used to update the processor's module configuration information
when the module’s configuration has been altered by a remote Master. The remote
Master writes a block code 9997 to module register 15400 (Modbus Address 55401),
causing the module to write its current configuration to the processor. Ladder logic must
handle the receipt of these blocks.

The first write block from the module contains a value of -9000 in the first word.

Block Response from Module to Processor

Word Offset Description Length

0 Reserved 1

1 -9000 1

2 to 7 Backplane Setup 6

8 to 32 Port 1 Configuration 25

33 to 57 Port 2 Configuration 25

58 to 60 Port 1 Configuration (continued) 3

61 to 63 Port 2 Configuration (continued) 3

64 to 248 Spare 185

249 -9000 1

Blocks -6000 to -6012 and -6100 to -6112 contain the Master Command List Data for
ports 1 and 2, respectively:

Block Response from Module to Processor

Word Offset Description Length

0 Reserved 1

1 -6000 to -6012 and -6100 to -6112 1

2 to 9 Command Definition 8

10 to 17 Command Definition 8

18 to 25 Command Definition 8

26 to 33 Command Definition 8

34 to 41 Command Definition 8

42 to 49 Command Definition 8

50 to 57 Command Definition 8

58 to 65 Command Definition 8

66 to 73 Command Definition 8

74 to 81 Command Definition 8

82 to 89 Command Definition 8

90 to 97 Command Definition 8

98 to 105 Command Definition 8

106 to 113 Command Definition 8

114 to 121 Command Definition 8

122 to 129 Command Definition 8

130 to 137 Command Definition 8

138 to 145 Command Definition 8

146 to 153 Command Definition 8

154 to 161 Command Definition 8

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 139 of 205

Word Offset Description Length

162 to 169 Command Definition 8

170 to 177 Command Definition 8

178 to 185 Command Definition 8

186 to 193 Command Definition 8

194 to 201 Command Definition 8

202 to 248 Spare 47

249 -6000 to -6012 and -6100 to -6112 1

Each of these blocks must be handled by the ladder logic for proper module operation.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 140 of 205

6.2.5 Data Flow Between MVI56E-MCM and ControlLogix Processor

The following topics describe the flow of data between the ControlLogix processor,
MVI56E-MCM module, and nodes on the Modbus network. Each port on the module can
be configured to emulate a Modbus Master device or a Modbus Slave device,
independently from the configuration of the other port. Only the module database is
shared between ports. The sections below discuss the operation of each mode.

Slave Driver

The Slave Driver Mode allows the module to respond to data read and write commands
issued by a Master on the Modbus network. The following illustration describes the flow
of data to and from the module.

1 The Modbus Slave Port driver receives the configuration information from the
ControlLogix processor. This information configures the serial port and defines the
Slave node characteristics. Additionally, the configuration information contains data
that can be used to offset data in the database to addresses requested in messages
received from Master units.

2 A Host device, such as a Modicon PLC or an HMI application, issues a read or write
command to the module’s node address. The port driver qualifies the message
before accepting it into the module.

3 After the module accepts the command, the data is immediately transferred to or
from the internal database in the module. If the command is a read command, the
data is read from the database and a response message is built. If the command is a
write command, the data is written directly into the database and a response
message is built.

4 After the data processing has been completed in Step 2, the response is issued to
the originating Master node.

5 Counters are available in the Status Block that permit the ladder logic program to
determine the level of activity of the Slave Driver.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 141 of 205

Refer to Using the Sample Program in an Existing Application (page 198) for a complete
list of the parameters that must be defined for a Slave Port.

An exception to this normal mode is when the pass-through mode is implemented. In
this mode, all write requests will be passed directly to the processor and will not be
placed in the database. This permits direct, remote control of the processor without the
intermediate database. This mode is especially useful for Master devices that do not
send both states of control. For example, a SCADA system may only send an on
command to a digital control point and never send the clear state. The SCADA system
expects the local logic to reset the control bit. Pass-through must be used to simulate
this mode.

The following illustration shows the data flow for a Slave Port with pass-through enabled:

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 142 of 205

Master Driver

In the Master mode, the MVI56E-MCM module issues read or write commands to Slave
devices on the Modbus network. These commands are user configured in the module
via the Master Command List received from the ControlLogix processor or issued
directly from the ControlLogix processor (event command control). Command status is
returned to the processor for each individual command in the command list status block.
The location of this status block in the module’s internal database is user defined.

The following illustration describes the flow of data to and from the module.

1 The Master driver obtains configuration data from the ControlLogix processor. The
configuration data obtained includes the number of commands and the Master
Command List. These values are used by the Master driver to determine the type of
commands to be issued to the other nodes on the Modbus network.

2 After configuration, the Master driver begins transmitting read and/or write
commands to the other nodes on the network. If writing data to another node, the
data for the write command is obtained from the module’s internal database to build
the command.

3 Presuming successful processing by the node specified in the command, a response
message is received into the Master driver for processing.

4 Data received from the node on the network is passed into the module’s internal
database, assuming a read command.

5 Status is returned to the ControlLogix processor for each command in the Master
Command List.

Refer to Using the Sample Program in an Existing Application (page 198) for a complete
description of the parameters required to define the virtual Modbus Master Port.

Take care when constructing each command to ensure predictable operation of the
module. If two commands write to the same internal database address of the module,
the results will not be as desired. All commands containing invalid data are ignored by
the module.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 143 of 205

Master Command List

In order to function in the Master Mode, you must define the module’s Master Command
List. This list contains up to 325 individual entries (for module firmware versions 3.01
and higher and Add-on-Instruction version 2.8 or higher), with each entry containing the
information required to construct a valid command. A valid command includes the
following items:

• Command enable mode: (0) disabled, (1) continuous or (2) conditional

• Slave Node Address

• Command Type: Read or Write up to 125 words (16000 bits) per command

• Database Source and Destination Register Address: The addresses where data will
be written or read.

• Count: The number of words to be transferred - 1 to 125 on FC 3, 4, or 16. Select the
number of bits on FC 1, 2, 15.

As the list is read in from the processor and as the commands are processed, an error
value is maintained in the module for each command. This error list can be transferred to
the processor. The following tables describe the error codes generated by the module.

Note: 125 words is the maximum count allowed by the Modbus protocol. Some field devices may support
less than the full 125 words. Check with your device manufacturer for the maximum count supported by your
particular slave.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 144 of 205

6.3 Cable Connections

The application ports on the MVI56E-MCM module support RS-232, RS-422, and RS-
485 interfaces. Please inspect the module to ensure that the jumpers are set correctly to
correspond with the type of interface you are using.

Note: When using RS-232 with radio modem applications, some radios or modems require hardware
handshaking (control and monitoring of modem signal lines). Enable this in the configuration of the module
by setting the UseCTS parameter to 1.

6.3.1 Ethernet Cable Specifications

The recommended cable is Category 5 or better. A Category 5 cable has four twisted
pairs of wires, which are color-coded and cannot be swapped. The module uses only
two of the four pairs.

The Ethernet ports on the module are Auto-Sensing. You can use either a standard
Ethernet straight-through cable or a crossover cable when connecting the module to an
Ethernet hub, a 10/100 Base-T Ethernet switch, or directly to a PC. The module will
detect the cable type and use the appropriate pins to send and receive Ethernet signals.

Ethernet cabling is like U.S. telephone cables, except that it has eight conductors. Some
hubs have one input that can accept either a straight-through or crossover cable,
depending on a switch position. In this case, you must ensure that the switch position
and cable type agree.

Refer to Ethernet Cable Configuration (page 144) for a diagram of how to configure
Ethernet cable.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 145 of 205

6.3.2 Ethernet Cable Configuration

Note: The standard connector view shown is color-coded for a straight-through cable.

Crossover cable Straight- through cable

RJ-45 PIN RJ-45 PIN

1 Rx+ 3 Tx+

2 Rx- 6 Tx-

3 Tx+ 1 Rx+

6 Tx- 2 Rx-

RJ-45 PIN RJ-45 PIN

1 Rx+ 1 Tx+

2 Rx- 2 Tx-

3 Tx+ 3 Rx+

6 Tx- 6 Rx-

6.3.3 Ethernet Performance

High Ethernet traffic may impact MVI56E-MCM performance, consider one of these
options:

• Use managed switches to reduce traffic coming to module port

• Use CIPconnect for these applications and disconnect the module Ethernet port from
the network

6.3.4 RS-232 Application Port(s)

When the RS-232 interface is selected, the use of hardware handshaking (control and
monitoring of modem signal lines) is user definable. If no hardware handshaking will be
used, here are the cable pinouts to connect to the port.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 146 of 205

RS-232: Modem Connection (Hardware Handshaking Required)

This type of connection is required between the module and a modem or other
communication device.

The "Use CTS Line" parameter for the port configuration should be set to 'Y' for most
modem applications.

RS-232: Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module requires
hardware handshaking (control and monitoring of modem signal lines).

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 147 of 205

RS-232: Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field device
communication port.

Note: For most null modem connections where hardware handshaking is not required, the Use CTS Line
parameter should be set to N and no jumper will be required between Pins 7 (RTS) and 8 (CTS) on the
connector. If the port is configured with the Use CTS Line set to Y, then a jumper is required between the
RTS and the CTS lines on the port connection.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 148 of 205

6.3.5 RS-422

The RS-422 interface requires a single four or five wire cable. The Common connection
is optional, depending on the RS-422 network devices used. The cable required for this
interface is shown below:

6.3.6 RS-485 Application Port(s)

The RS-485 interface requires a single two or three wire cable. The Common connection
is optional, depending on the RS-485 network devices used. The cable required for this
interface is shown below:

Note: This type of connection is commonly called a RS-485 half-duplex, 2-wire connection. If you have RS-
485 4-wire, full-duplex devices, they can be connected to the gateway's serial ports by wiring together the
TxD+ and RxD+ from the two pins of the full-duplex device to Pin 1 on the gateway and wiring together the
TxD- and RxD- from the two pins of the full-duplex device to Pin 8 on the gateway. As an alternative, you
could try setting the gateway to use the RS-422 interface and connect the full-duplex device according to
the RS-422 wiring diagram. For additional assistance, please contact ProSoft Technical Support.

Note: Depending upon devices on the network, if there are problems in RS-485 communication that can be
attributed to the signal echoes or reflections, then consider adding 120 OHM terminating resistors at both
ends of the RS-485 line.

RS-485 and RS-422 Tip

If communication in the RS-422 or RS-485 mode does not work at first, despite all
attempts, try switching termination polarities. Some manufacturers interpret + and -, or A
and B, polarities differently.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 149 of 205

6.3.7 DB9 to RJ45 Adaptor (Cable 14)

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 150 of 205

6.4 MVI56E-MCM Database Definition

This section contains a listing of the internal database of the MVI56E-MCM module. This
information can be used to interface other devices to the data contained in the module.

Register Range Modbus Low Modbus High Content Size

0 to 9999 40001 50000 User Data 10000

10000 to 10009 50001 50010 Backplane Configuration 10

10010 to 10039 50011 50040 Port 1 Setup 30

10040 to 10069 50041 50070 Port 2 Setup 30

10070 to 12669 50071 52670 Port 1 Commands 2600

12670 to 15269 52671 55270 Port 2 Commands 2600

15270 to 15359 55271 55350 Misc. Status Data 80

15350 to 15359 55351 55360 Port 1 Aux Setup 10

15360 to 15369 55361 55370 Port 2 Aux Setup 10

15400 55401 Command Control 1

The User Data area holds data collected from other nodes on the network (Master read
commands) or data received from the processor (write blocks).

Additionally, this data area is used as a data source for the processor (read blocks) or
other nodes on the network (write commands).

Detailed definition of the miscellaneous status data area can be found in MVI56E-MCM
Status Data Definition (page 160).

Definition of the configuration data areas can be found in the data definition section of
this document and in MVI56E-MCM Configuration Data (page 151).

Command Control (page 160) shows the Database register definition in a table for the
Command Control block.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 151 of 205

6.5 MVI56E-MCM Configuration Data

This section contains listings of the MVI56E-MCM module's database related to the
module's configuration. This data is available to any node on the network and is read
from the ControlLogix processor when the module first initializes.

6.5.1 Backplane Setup

Register Content Description

10,000 Write Start Reg This parameter specifies the starting register in the
module where the data transferred from the
processor will be placed. Valid range for this
parameter is 0 to 9999.

10,001 Write Reg Count This parameter specifies the number of registers to
transfer from the processor to the module. Valid
entry for this parameter is 0 to 10000.

10,002 Read Start Reg This parameter specifies the starting register in the
module where data will be transferred from the
module to the processor. Valid range for this
parameter is 0 to 9999.

10,003 Read Reg Count This parameter specifies the number of registers to
be transferred from the module to the processor.
Valid entry for this parameter is 0 to 10000.

10,004 Backplane Fail This parameter specifies the number of successive
transfer errors that must occur before the
communication ports are shut down. If the
parameter is set to zero, the communication ports
will continue to operate under all conditions. If the
value is set larger than 0 (1 to 65535),
communications will cease if the specified number
of failures occur.

10,005 Error Status Pointer This parameter specifies the register location in the
module's database where module status data will
be stored. If a value less than zero is entered, the
data will not be stored in the database. If the value
specified in the range of 0 to 9940, the data will be
placed in the user data area.

 10,006 to 10,009 Spare

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 152 of 205

6.5.2 Port 1 Setup

Register Content Description

10,010 Enable This parameter defines if this Modbus Port will be
used. If the parameter is set to 0, the port is
disabled. A value of 1 enables the port.

10,011 Type This parameter specifies if the port will emulate a
Modbus Master device (0), a Modbus Slave device
without pass-through (1), a Modbus Slave device
with unformatted pass-through (2), a Modbus Slave
device with formatted pass-through and data
swapping (3), or a Modbus Slave device with
formatted pass-through and no data swapping (4).

10,012 Float Flag This flag specifies if the floating-point data access
functionality is to be implemented. If the float flag is
set to 1, Modbus functions 3, 6, and 16 will
interpret floating-point values for registers as
specified by the two following parameters.

10,013 Float Start This parameter defines the first register of floating-
point data. All requests with register values greater
than or equal to this value will be considered
floating-point data requests. This parameter is only
used if the Float Flag is enabled.

10,014 Float Offset This parameter defines the start register for
floating-point data in the internal database. This
parameter is only used if the Float Flag is enabled.

10,015 Protocol This parameter specifies the Modbus protocol to be
used on the port. Valid protocols are: 0 = Modbus
RTU and 1 = Modbus ASCII.

10,016 Baud Rate This is the baud rate to be used on the port. Enter
the baud rate as a value. For example, to select
19K baud, enter 19200. Valid entries are 110, 150,
300, 600, 1200, 2400, 4800, 9600, 19200, 28800,
384 (for 38400 bps), 576 (for 57600 bps), and 115
or 1152 (for 115,200 bps).

10,017 Parity This is the parity code to be used for the port.
Values are None, Odd, Even.

10,018 Data Bits This parameter sets the number of data bits for
each word used by the protocol. Valid entries for
this field are 5 through 8.

10,019 Stop Bits This parameter sets the number of stop bits for
each data value sent. Valid entries are 1 and 2.

10,020 RTS On This parameter sets the number of milliseconds to
delay after RTS is asserted before the data will be
transmitted. Valid values are in the range of 0 to
65535 milliseconds.

10,021 RTS Off This parameter sets the number of milliseconds to
delay after the last byte of data is sent before the
RTS modem signal will be set low. Valid values are
in the range of 0 to 65535.

10,022 Minimum Response
Time

This parameter specifies the minimum number of
milliseconds to delay before responding to a
request message. This pre-send delay is applied
before the RTS on time. This may be required
when communicating with slow devices.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 153 of 205

Register Content Description

10,023 Use CTS Line This parameter specifies if the CTS modem control
line is to be used. If the parameter is set to 0, the
CTS line will not be monitored. If the parameter is
set to 1, the CTS line will be monitored and must
be high before the module will send data. This
parameter is normally only required when half-
duplex modems are used for communication (2-
wire).

10,024 Slave ID This parameter defines the virtual Modbus Slave
address for the internal database. All requests
received by the port with this address are
processed by the module. Verify that each device
has a unique address on a network. Valid range for
this parameter is 1 to 255 (247 on some networks).

10,025 Bit in Offset This parameter specifies the offset address in the
internal Modbus database for network requests for
Modbus Function 2 commands. For example, if the
value is set to 150, an address request of 0 will
return the value at register 150 in the database.

10,026 Word in Offset This parameter specifies the offset address in the
internal Modbus database for network request for
Modbus function 4 commands. For example, if the
value is set to 150, an address request of 0 will
return the value at register 150 in the database.

10,027 Out in Offset This parameter specifies the offset address in the
internal Modbus database for network requests for
Modbus function 1, 5, or 15 commands. For
example, if the value is set to 100, an address
request of 0 will correspond to register 100 in the
database.

10,028 Holding Reg Offset This parameter specifies the offset address in the
internal Modbus database for network requests for
Modbus function 3, 6, or 16 commands. For
example, if a value of 50 is entered, a request for
address 0 will correspond to the register 50 in the
database.

10,029 Command Count This parameter specifies the number of commands
to be processed by the Modbus Master Port.

10,030 Minimum Command
Delay

This parameter specifies the number of
milliseconds to wait between issuing each
command. This delay value is not applied to
retries.

10,031 Command Error Pointer This parameter sets the address in the internal
Modbus database where the command error will be
placed. If the value is set to -1, the data will not be
transferred to the database. The valid range of
values for this parameter is -1 to 9675.

10,032 Response Timeout This parameter represents the message response
timeout period in 1-millisecond increments. This is
the time that a port configured as a Master will wait
before re-transmitting a command if no response is
received from the addressed Slave. The value is
set depending upon the communication network
used and the expected response time of the
slowest device on the network.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 154 of 205

Register Content Description

10,033 Retry Count This parameter specifies the number of times a
command will be retried if it fails. If the Master Port
does not receive a response after the last retry, the
Slave devices communication will be suspended
on the port for Error Delay Counter scans.

10,034 Error Delay Counter This parameter specifies the number of poll
attempts to be skipped before trying to re-establish
communications with a slave that has failed to
respond to a command within the time limit set by
the Response Timeout parameter. After the slave
fails to respond, the master will skip sending
commands that should have been sent to the slave
until the number of skipped commands matches
the value entered in this parameter. This creates a
sort of slow poll mode for slaves that are
experiencing communication problems.

10,035 to 10,039 Spare Reserved for future use.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 155 of 205

6.5.3 Port 2 Setup

Register Content Description

10,040 Enable This parameter defines if this Modbus Port will be
used. If the parameter is set to 0, the port is
disabled. A value of 1 enables the port.

10,041 Type This parameter specifies if the port will emulate a
Modbus Master device (0), a Modbus Slave device
without pass-through (1), a Modbus Slave device
with unformatted pass-through (2), a Modbus Slave
device with formatted pass-through and data
swapping (3), or a Modbus Slave device with
formatted pass-through and no data swapping (4).

10,042 Float Flag This flag specifies if the floating-point data access
functionality is to be implemented. If the float flag is
set to 1, Modbus functions 3, 6, and 16 will
interpret floating-point values for registers as
specified by the two following parameters.

10,043 Float Start This parameter defines the first register of floating-
point data. All requests with register values greater
than or equal to this value will be considered
floating-point data requests. This parameter is only
used if the Float Flag is enabled.

10,044 Float Offset This parameter defines the start register for
floating-point data in the internal database. This
parameter is only used if the Float Flag is enabled.

10,045 Protocol This parameter specifies the Modbus protocol to be
used on the port. Valid protocols are: 0 = Modbus
RTU and 1 = Modbus ASCII.

10,046 Baud Rate This is the baud rate to be used on the port. Enter
the baud rate as a value. For example, to select
19K baud, enter 19200. Valid entries are 110, 150,
300, 600, 1200, 2400, 4800, 9600, 19200, 28800,
384 (for 38400 bps), 576 (for 57600 bps), and 115
or 1152 (for 115,200 bps).

10,047 Parity This is the parity code to be used for the port.
Values are None, Odd, Even.

10,048 Data Bits This parameter sets the number of data bits for
each word used by the protocol. Valid entries for
this field are 5 through 8.

10,049 Stop Bits This parameter sets the number of stop bits for
each data value sent. Valid entries are 1 and 2.

10,050 RTS On This parameter sets the number of milliseconds to
delay after RTS is asserted before the data will be
transmitted. Valid values are in the range of 0 to
65535 milliseconds.

10,051 RTS Off This parameter sets the number of milliseconds to
delay after the last byte of data is sent before the
RTS modem signal will be set low. Valid values are
in the range of 0 to 65535.

10,052 Minimum Response
Time

This parameter specifies the minimum number of
milliseconds to delay before responding to a
request message. This pre-send delay is applied
before the RTS on time. This may be required
when communicating with slow devices.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 156 of 205

Register Content Description

10,053 Use CTS Line This parameter specifies if the CTS modem control
line is to be used. If the parameter is set to 0, the
CTS line will not be monitored. If the parameter is
set to 1, the CTS line will be monitored and must
be high before the module will send data. This
parameter is normally only required when half-
duplex modems are used for communication (2-
wire).

10,054 Slave ID This parameter defines the virtual Modbus Slave
address for the internal database. All requests
received by the port with this address are
processed by the module. Verify that each device
has a unique address on a network. Valid range for
this parameter is 1 to 255 (247 on some networks).

10,055 Bit in Offset This parameter specifies the offset address in the
internal Modbus database for network requests for
Modbus Function 2 commands. For example, if the
value is set to 150, an address request of 0 will
return the value at register 150 in the database.

10,056 Word in Offset This parameter specifies the offset address in the
internal Modbus database for network request for
Modbus function 4 commands. For example, if the
value is set to 150, an address request of 0 will
return the value at register 150 in the database.

10,057 Out in Offset This parameter specifies the offset address in the
internal Modbus database for network requests for
Modbus function 1, 5, or 15 commands. For
example, if the value is set to 100, an address
request of 0 will correspond to register 100 in the
database.

10,058 Holding Reg Offset This parameter specifies the offset address in the
internal Modbus database for network requests for
Modbus function 3, 6, or 16 commands. For
example, if a value of 50 is entered, a request for
address 0 will correspond to the register 50 in the
database.

10,059 Command Count This parameter specifies the number of commands
to be processed by the Modbus Master Port.

10,060 Minimum Command
Delay

This parameter specifies the number of
milliseconds to wait between issuing each
command. This delay value is not applied to
retries.

10,061 Command Error Pointer This parameter sets the address in the internal
Modbus database where the command error will be
placed. If the value is set to -1, the data will not be
transferred to the database. The valid range of
values for this parameter is -1 to 9675.

10,062 Response Timeout This parameter represents the message response
timeout period in 1-millisecond increments. This is
the time that a port configured as a Master will wait
before re-transmitting a command if no response is
received from the addressed Slave. The value is
set depending upon the communication network
used and the expected response time of the
slowest device on the network.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 157 of 205

Register Content Description

10,063 Retry Count This parameter specifies the number of times a
command will be retried if it fails. If the Master Port
does not receive a response after the last retry, the
Slave devices communication will be suspended
on the port for Error Delay Counter scans.

10,064 Error Delay Counter This parameter specifies the number of poll
attempts to be skipped before trying to re-establish
communications with a slave that has failed to
respond to a command within the time limit set by
the Response Timeout parameter. After the slave
fails to respond, the master will skip sending
commands that should have been sent to the slave
until the number of skipped commands matches
the value entered in this parameter. This creates a
sort of slow poll mode for slaves that are
experiencing communication problems.

10,065 to 10,069 Spare

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 158 of 205

6.5.4 Port 1 Commands

Register Content Description

10,070 to 10,077 Command #1 This set of registers contains the parameters for
the first command in the Master command list.
Refer to Master Command Configuration (page
37).

10,078 to 10,085 Command #2 Command #2 data set

- - -

12,662 to 12,669 Command #325 Command #325 data set

Note: To use up to 325 commands, your MVI56E-MCM module needs to have firmware version 3.01 or
higher, and your MVI56E-MCM Add-On Instruction needs to be version 2.8 or higher. Earlier versions
support up to 100 commands.

6.5.5 Port 2 Commands

Register Content Description

12,670 to 12,677 Command #1 This set of registers contains the parameters for
the first command in the Master command list.
Refer to Master Command Configuration (page
37).

12,678 to 12,685 Command #2 Command #2 data set

- - -

15,626 to 15,629 Command #325 Command #325 data set

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 159 of 205

6.5.6 Miscellaneous Status

Register Content Description

15,270 Program Scan Count This value is incremented each time a complete
program cycle occurs in the module.

15,271 to 15,272 Product Code These two registers contain the product code of
"MCM".

15,273 to 15,274 Product Version These two registers contain the product version
for the current running software.

15,275 to 15,276 Operating System These two registers contain the month and year
values for the program operating system.

15,277 to 15,278 Run Number These two registers contain the run number value
for the currently running software.

15,279 Port 1 Command List
Requests

This field contains the number of requests made
from this port to Slave devices on the network.

15,280 Port 1 Command List
Response

This field contains the number of Slave response
messages received on the port.

15,281 Port 1 Command List
Errors

This field contains the number of command errors
processed on the port. These errors could be due
to a bad response or command.

15,282 Port 1 Requests This field contains the total number of messages
sent from the port.

15,283 Port 1 Responses This field contains the total number of messages
received on the port.

15,284 Port 1 Errors Sent This field contains the total number of message
errors sent from the port.

15,285 Port 1 Errors Received This field contains the total number of message
errors received on the port.

15,286 Port 2 Command List
Requests

This field contains the number of requests made
from this port to Slave devices on the network.

15,287 Port 2 Command List
Response

This field contains the number of Slave response
messages received on the port.

15,288 Port 2 Command List
Errors

This field contains the number of command errors
processed on the port. These errors could be due
to a bad response or command.

15,289 Port 2 Requests This field contains the total number of messages
sent out the port.

15,290 Port 2 Responses This field contains the total number of messages
received on the port.

15,291 Port 2 Errors Sent This field contains the total number of message
errors sent out the port.

15,292 Port 2 Errors Received This field contains the total number of message
errors received on the port.

15,293 Read Block Count This field contains the total number of read blocks
transferred from the module to the processor.

15,294 Write Block Count This field contains the total number of write blocks
transferred from the module to the processor.

15,295 Parse Block Count This field contains the total number of blocks
successfully parsed that were received from the
processor.

15,296 Command Event Block
Count

This field contains the total number of command
event blocks received from the processor.

15,297 Command Block Count This field contains the total number of command
blocks received from the processor.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 160 of 205

Register Content Description

15,298 Error Block Count This field contains the total number of block errors
recognized by the module.

15,299 Port 1 Current Error For a Slave Port, this field contains the value of
the current error code returned. For a Master Port,
this field contains the index of the currently
executing command.

15,300 Port 1 Last Error For a Slave Port, this field contains the value of
the last error code returned. For a Master Port,
this field contains the index of the command with
the error.

15,301 Port 2 Current Error For a Slave Port, this field contains the value of
the current error code returned. For a Master Port,
this field contains the index of the currently
executing command.

15,302 Port 2 Last Error For a Slave Port, this field contains the value of
the last error code returned. For a Master Port,
this field contains the index of the command with
an error.

15,303 to 15,350 Spare

15,351 Port 1
InterCharacterDelay

0 to 65535 milliseconds time between characters
to signal end of message

15,352 Port 1 Fcn 99 Offset Internal DB offset to Function 99 counter.

15,353 to 15,360 Spare

15,360 Spare

15,361 Port 2
InterCharacterDelay

0 to 65535 milliseconds time between characters
to signal end of message

15,362 Port 2 Fcn 99 Offset Internal DB offset to Function 99 counter.

15,363 to 15,399 Spare

6.5.7 Command Control

Register Content Description

15,400 Command Code Enter one of the valid control command codes in
this register to control the module (9997, 9998, or
9999).

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 161 of 205

6.6 MVI56E-MCM Status Data Definition

This section contains a description of the members present in the MCM.STATUS object.
This data is transferred from the module to the processor as part of each read block.

Offset Content Description

202 Program Scan Count This value is incremented each time a complete program
cycle occurs in the module.

203 to 204 Product Code These two registers contain the product code of "MCM".

205 to 206 Product Version These two registers contain the product version for the
current running software.

207 to 208 Operating System These two registers contain the month and year values for
the program operating system.

209 to 210 Run Number These two registers contain the run number value for the
currently running software.

211 Port 1 Command List
Requests

This field contains the number of requests made from this
port to Slave devices on the network.

212 Port 1 Command List
Response

This field contains the number of Slave response messages
received on the port.

213 Port 1 Command List
Errors

This field contains the number of command errors
processed on the port. These errors could be due to a bad
response or command.

214 Port 1 Requests This field contains the total number of messages sent from
the port.

215 Port 1 Responses This field contains the total number of messages received
on the port.

216 Port 1 Errors Sent This field contains the total number of message errors sent
from the port.

217 Port 1 Errors
Received

This field contains the total number of message errors
received on the port.

218 Port 2 Command List
Requests

This field contains the number of requests made from this
port to Slave devices on the network.

219 Port 2 Command List
Response

This field contains the number of Slave response messages
received on the port.

220 Port 2 Command List
Errors

This field contains the number of command errors
processed on the port. These errors could be due to a bad
response or command.

221 Port 2 Requests This field contains the total number of messages sent out
the port.

222 Port 2 Responses This field contains the total number of messages received
on the port.

223 Port 2 Errors Sent This field contains the total number of message errors sent
out the port.

224 Port 2 Errors
Received

This field contains the total number of message errors
received on the port.

225 Read Block Count This field contains the total number of read blocks
transferred from the module to the processor.

226 Write Block Count This field contains the total number of write blocks
transferred from the module to the processor.

227 Parse Block Count This field contains the total number of blocks successfully
parsed that were received from the processor.

228 Command Event
Block Count

This field contains the total number of command event
blocks received from the processor.

229 Command Block
Count

This field contains the total number of command blocks
received from the processor.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 162 of 205

Offset Content Description

230 Error Block Count This field contains the total number of block errors
recognized by the module.

231 Port 1 Current Error For a Slave Port, this field contains the value of the most
recently returned error code. For a Master Port, this field
contains the index number of the most recently executed
command that failed.

232 Port 1 Last Error For a Slave Port, this field contains the value of the previous
most recently returned error code. For a Master Port, this
field contains the index number of the previous most
recently executed command that failed.

233 Port 2 Current Error For a Slave Port, this field contains the value of the most
recently returned error code. For a Master Port, this field
contains the index number of the most recently executed
command that failed.

234 Port 2 Last Error For a Slave Port, this field contains the value of the previous
most recently returned error code. For a Master Port, this
field contains the index number of the previous most
recently executed command that failed.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 163 of 205

6.7 MVI56E-MCM User Defined Data Types

6.7.1 MCMModuleDef

This object contains the data types that apply to the operation of the module.

Name Data Type Description

CONFIG MCMCONFIG (page
163)

Module and port configuration

DATA MCMDATA (page
165)

Modbus data transferred between module and
processor

STATUS MCMSTATUS (page
166)

Status information in each read block

CONTROL MCMCONTROL
(page 167)

Optional requests from the processor to the
module

UTIL Util (page 168) Variables for internal ladder usage - should not
be accessed by user application

6.7.2 MCMCONFIG

This object contains the data types that apply to the configuration of the module. Refer to
MVI56E-MCM Configuration Data (page 151) for a complete description of each element
in this object.

Name Data Type Description

ModDef MCMModule
(page 163)

Module Definition

Port1 MCMPort
(page 164)

Port 1 configuration settings

Port2 MCMPort Port 2 configuration settings

Port1MasterCmd MCMCmd
(page 164)

Master commands for Port 1 (ignore if port is
configured for slave mode)

Port2MasterCmd MCMCmd[325] Master commands for Port 2 (ignore if port is
configured for slave mode)

Note: To use up to 325 commands, your MVI56E-MCM module needs to have firmware version 3.01 or
higher, and your MVI56E-MCM Add-On Instruction needs to be version 2.8 or higher. Earlier versions
support up to 100 commands.

MCMModule

This object contains the information used to define the data movement between the
module and the processor.

Name Data Type Description

WriteStartReg INT Start reg to transfer from PLC to module

WriteRegCnt INT Number of registers to write from PLC

ReadStartReg INT Start reg to transfer from module to PLC

ReadRegCnt INT Number of registers to transfer from module

BPFail INT Determines module operation if BP fails
0 = Continue
>0 = Number of retries before comm shutdown

ErrStatPtr INT Internal DB start register for status data
-1 = Ignore

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 164 of 205

MCMPort

This object contains the serial port configuration for the MVI56E-MCM module.

Name Data Type Description

Enabled INT 0 = Port Disabled,1 = Port Enabled

Type INT 0 = Master
1 = Slave
2 = Slave: pass-through
3 = Slave: formatted pass-through/data
swapped
4 = Slave: form. pass-through

FloatFlag INT 0 = No floating-point data
1 = Use floating-point data

FloatStart INT Register offset in message for floating-point
data

FloatOffset INT Internal DB offset to start of floating-point data

Protocol INT 0 = Modbus RTU, 1 = Modbus ASCII

Baudrate INT Baudrate for port (110 to 115.2K)

Parity INT 0 = None, 1 = Odd, 2 = Even, 3 = Mark, 4 =
Space

DataBits INT 5 to 8 data bits

StopBits INT 1 or 2 stop bits

RTSOn INT 0 to 65535 mSec delay before data

RTSOff INT 0 to 65535 mSec delay after data

MinResp INT 0 to 65535 mSec minimum time before
response to request

UseCTS INT 0=No, 1=Yes to use CTS modem line

SlaveID INT 1-255 Modbus Node Address (Slave)

BitInOffset INT Internal DB offset to bit input data (Slave)

WordInOffset INT Internal DB offset to word input data (Slave)

OutOffset INT Internal DB offset to bit output data (Slave)

HoldOffset INT Internal DB offset to holding register data
(Slave)

CmdCount INT Command list count (Master)

MinCmdDelay INT 0 to 65535 mSec minimum time between each
command (Master)

CmdErrPtr INT Internal DB location to place command error
list (Master)

RespTO INT 0 to 65535 mSec response timeout for
command (Master)

RetryCount INT Retry count for failed request (Master)

ErrorDelayCntr INT 0 to 65535 Command cycle count if error
(Master)

Reserved INT Reserved (Previously was UseGuardBand
parameter)

InterCharacterDelay INT 0 to 65535 mSec time between characters to
signal end of message

Fcn99Offset INT Internal DB offset to function 99 counter

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 165 of 205

MCMCmd

This object contains the attributes to define a Master command. An array of these
objects is used for each port.

Name Data Type Description

Enable INT 0 = Disable,1 = Continuous,2 = Event
Command

IntAddress INT Module's internal address associated with the
command

PollInt INT Minimum number of seconds between
issuance of command (0 to 65535 Sec)

Count INT Number of registers associated with the
command

Swap INT Swap code used with command

Node INT Node address of the target device on the
network

Func INT Function code for the command

DevAddress INT Address in device associated with the
command. Hexadecimal format can be used to
enter values above 32767.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 166 of 205

6.7.3 MCMDATA

Contains Read Data (data read from the module to the processor) and Write Data (data
written from the processor to the module).

Name Data Type Description

ReadData INT[600] Data read from the module to the processor

WriteData INT[600] Data written from the processor to the module

6.7.4 MCMSTATUS

This status data is returned on each read block and can be used to detect proper
module operation.

Name Data Type Description

PassCnt INT Program cycle counter

Product INT[2] Product Name

Rev INT[2] Revision Level Number

OP INT[2] Operating Level Number

Run INT[2] Run Number

Prt1Errs MCMPortErrors
(page 166)

Port 1 error statistics

Prt2Errs MCMPortErrors Port 2 error statistics

Blk MCMBlkStat (page
167)

Block transfer statistics

Port1LastErr INT Last command index that received an error on
Port 1

Port1PreviousErr INT Previous Command index that received an
error on Port 1

Port2LastErr INT Last command index that received an error on
Port 2

Port2PreviousErr INT Previous Command index that received an
error on Port 2

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 167 of 205

MCMPortErrors

This object stores the port statistics for an MVI56E-MCM port.

Name Data Type Description

CmdReq INT Total number of command list requests sent

CmdResp INT Total number of command list responses
received

CmdErr INT Total number of command list errors

Requests INT Total number of requests for port

Responses INT Total number of responses for port

ErrSent INT Total number of errors sent

ErrRec INT Total number of errors received

MCMBlkStat

This object stores the block transfer statistics for the module.

Name Data Type Description

Read INT Total number of read block transfers

Write INT Total number of write block transfers

Parse INT Total number of blocks parsed

Event INT Total number of event blocks received

Cmd INT Total number of command blocks received

Err INT Total number of block transfer errors

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 168 of 205

6.7.5 MCMCONTROL

This object contains the attributes to define a Master command. An array of these
objects is used for each port.

Name Data Type Description

WarmBoot BOOL Warm Boot

ColdBoot BOOL Cold Boot

SlaveControl MCMSlaveControl
(page 168)

Allows the control of slave parameters.

CmdControl MCMCmdControl
(page 168)

Allows for a disabled command to be sent to a
device (Master).

EventCmd MCMEventCmd
(page 168)

Allows a command defined in ladder to be sent
to a device (Master).

SlavePollStat MCMSlavePollStat
(page 169)

Request slave poll status for the port (Master).

Passthru MCMPassthru
(page 169)

Contains PassThru objects required when
PortX.Type is set to a value between 2 to 4.

SlaveControl

Name Data Type Description

TriggerSlaveControl BOOL Trigger to Enable or Disable Slaves

PortNumber INT Slave Address

NumberOfSlaves INT Number of Slaves

BlockNumber INT Block ID number

SlaveIndexes INT[200] Slave Indexes

NumberOfSlavesProcessed INT Number of Slaves processed

EnableSlaves BOOL Set 0 to Disable or 1 to Enable Slaves

CmdControl

Name Data Type Description

TriggerCmdCntrl BOOL Trigger command control. User application will
activate this trigger

NumberOfCommands INT Number of commands per block (1 to 6)

PortNumber INT MVI56-MCM Port Number of master port (1 or
2)

CommandIndex INT[6] Stores the command indexes for command
control

CmdsAddedToQueue INT Number of commands added to queue

CmdControlBlockID INT Temporary variable to calculate control block
ID

CmdCntrlPending BOOL Auxiliary control command - prevents a second
request before acknowledgment is received

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 169 of 205

EventCmd

Name Data Type Description

EventCmdTrigger BOOL Trigger for event command. User ladder must
set this bit to initiate event command

EventCmdPending BOOL Set after the ladder has sent an event cmd to
the module and is waiting for the status to be
returned

PortNumber INT Module master port number associated to this
request (1 or 2)

SlaveAddress INT Modbus slave node address

InternalDBAddress INT Internal database address

PointCount INT Number of points for this command

SwapCode INT Swap code (0= no swap, 1=swap words,
2=swap words and bytes, 3=swap bytes)

ModbusFunctionCode INT Modbus function code

DeviceDBAddress INT Modbus register address within slave

EventCmdStatusReturned INT (0=Fail, 1=Success)

EventBlockID INT Temporary variable to calculate event block ID

SlavePollStat

This object contains all of the Slave Polling status (when the port is used as a Master).

Tag Name Data Type Description

Port1Slave0Read BOOL

Port1Slave128Read BOOL

Port2Slave0Read BOOL

Port2Slave128Read BOOL

P1Slaves INT[256] P1 Slave Status

P2Slaves INT[256] P2 Slave Status

Passthru

Tag Name Data Type Description

MBOffset INT

MBOffsetBit INT

MBMsgLen INT

MBMsg SINT[500]

MBControl1 MCMCONTROL
(page 167)

MBControl2 MCMCONTROL
(page 167)

MBScratch INT[3]

MBCoil CoilArray (page
169)

Conversion from Bool to INT data types

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 170 of 205

6.7.6 MCMUTIL

This object contains optional elements for the module.

Name Data Type Description

BPLastRead INT Index of last read block

BPLastWrite INT Index of last write block

BlockIndex INT Computed block offset for data table

ReadDataSize DINT Size of Read Data Array

MaxReadBlock DINT Maximum read block

WriteDataSize DINT Size of Write Data Array

MaxWriteBlock DINT Maximum write block

RBTSremainder INT Contains remainder from Read Data array size
divided by the block size

WBTSremainder INT Contains remainder from Write Data array size
divided by the block size

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 171 of 205

6.8 Modbus Protocol Specification

The following pages give additional reference information regarding the Modbus protocol
commands supported by the MVI56E-MCM.

6.8.1 Commands Supported by the Module

The format of each command in the list depends on the Modbus Function Code being
executed.

The following table lists the functions supported by the module.

Function
Code

Definition Supported in
Master

Supported in
Slave

1 Read Coil Status X X

2 Read Input Status X X

3 Read Holding Registers X X

4 Read Input Registers X X

5 Set Single Coil X X

6 Single Register Write X X

8 Diagnostics X

15 Multiple Coil Write X X

16 Multiple Register Write X X

17 Report Slave ID X

22 Mask Write 4X X

23 Read/Write X

Each command list record has the same general format. The first part of the record
contains the information relating to the communication module and the second part
contains information required to interface to the Modbus slave device.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 172 of 205

6.8.2 Read Coil Status (Function Code 01)

Query

This function allows the user to obtain the ON/OFF status of logic coils used to control
discrete outputs from the addressed Slave only. Broadcast mode is not supported with
this function code. In addition to the Slave address and function fields, the message
requires that the information field contain the initial coil address to be read (Starting
Address) and the number of locations that is interrogated to obtain status data.

The addressing allows up to 2000 coils to be obtained at each request; however, the
specific Slave device may have restrictions that lower the maximum quantity. The coils
are numbered from zero; (coil number 1 = zero, coil number 2 = one, coil number 3 =
two, and so on).

The following table is a sample read output status request to read coils 0020 to 0056
from Slave device number 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display

Adr Func Data Start Pt Hi Data Start Pt Lo Data # Of Pts Ho Data # Of Pts Lo Error Check Field

0B 01 00 13 00 25 CRC

Response

An example response to Read Coil Status is as shown in the table below. The data is
packed one bit for each coil. The response includes the Slave address, function code,
quantity of data characters, the data characters, and error checking. Data is packed with
one bit for each coil (1 = ON, 0 = OFF). The low order bit of the first character contains
the addressed coil, and the remainder follow. For coil quantities that are not even
multiples of eight, the last characters is filled in with zeros at high order end. The
quantity of data characters is always specified as quantity of RTU characters, that is, the
number is the same whether RTU or ASCII is used.

Because the Slave interface device is serviced at the end of a controller's scan, data
reflects coil status at the end of the scan. Some Slaves limit the quantity of coils
provided each scan; thus, for large coil quantities, multiple PC transactions must be
made using coil status from sequential scans.

Adr Func Byte
Count

Data Coil
Status 20 to
27

Data Coil
Status 28 to
35

Data Coil
Status 36 to
43

Data Coil
Status 44 to
51

Data Coil
Status 52 to
56

Error
Check
Field

0B 01 05 CD 6B B2 OE 1B CRC

The status of coils 20 to 27 is shown as CD(HEX) = 1100 1101 (Binary). Reading left to
right, this shows that coils 27, 26, 23, 22, and 20 are all on. The other coil data bytes are
decoded similarly. Due to the quantity of coil statuses requested, the last data field,
which is shown 1B (HEX) = 0001 1011 (Binary), contains the status of only 5 coils (52 to
56) instead of 8 coils. The 3 left most bits are provided as zeros to fill the 8-bit format.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 173 of 205

6.8.3 Read Input Status (Function Code 02)

Query

This function allows the user to obtain the ON/OFF status of discrete inputs in the
addressed Slave PC Broadcast mode is not supported with this function code. In
addition to the Slave address and function fields, the message requires that the
information field contain the initial input address to be read (Starting Address) and the
number of locations that are interrogated to obtain status data.

The addressing allows up to 2000 inputs to be obtained at each request; however, the
specific Slave device may have restrictions that lower the maximum quantity. The inputs
are numbered form zero; (input 10001 = zero, input 10002 = one, input 10003 = two, and
so on, for a 584).

The following table is a sample read input status request to read inputs 10197 to 10218
from Slave number 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

Adr Func Data Start Pt Hi Data Start Pt Lo Data #of Pts Hi Data #of Pts Lo Error Check Field

0B 02 00 C4 00 16 CRC

Response

An example response to Read Input Status is as shown in the table below. The data is
packed one bit for each input. The response includes the Slave address, function code,
quantity of data characters, the data characters, and error checking. Data is packed with
one bit for each input (1=ON, 0=OFF). The lower order bit of the first character contains
the addressed input, and the remainder follow. For input quantities that are not even
multiples of eight, the last characters is filled in with zeros at high order end. The
quantity of data characters is always specified as a quantity of RTU characters, that is,
the number is the same whether RTU or ASCII is used.

Because the Slave interface device is serviced at the end of a controller's scan, data
reflects input status at the end of the scan. Some Slaves limit the quantity of inputs
provided each scan; thus, for large coil quantities, multiple PC transactions must be
made using coil status for sequential scans.

Adr Func Byte
Count

Data Discrete Input
10197 to 10204

Data Discrete Input
10205 to 10212

Data Discrete Input
10213 to 10218

Error Check Field

0B 02 03 AC DB 35 CRC

The status of inputs 10197 to 10204 is shown as AC (HEX) = 10101 1100 (binary).
Reading left to right, this show that inputs 10204, 10202, and 10199 are all on. The other
input data bytes are decoded similar.

Due to the quantity of input statuses requested, the last data field which is shown as 35
HEX = 0011 0101 (binary) contains the status of only 6 inputs (10213 to 102180) instead
of 8 inputs. The two left-most bits are provided as zeros to fill the 8-bit format.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 174 of 205

6.8.4 Read Holding Registers (Function Code 03)

Query

Read Holding Registers (03) allows the user to obtain the binary contents of holding
registers 4xxxx in the addressed Slave. The registers can store the numerical values of
associated timers and counters which can be driven to external devices. The addressing
allows up to 125 registers to obtained at each request; however, the specific Slave
device may have restriction that lower this maximum quantity. The registers are
numbered form zero (40001 = zero, 40002 = one, and so on). The broadcast mode is
not allowed.

The example below reads registers 40108 through 40110 from Slave number 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

Adr Func Data Start Reg Hi Data Start Reg Lo Data #of Regs Hi Data #of Regs Lo Error Check Field

0B 03 00 6B 00 03 CRC

Response

The addressed Slave responds with its address and the function code, followed by the
information field. The information field contains 1 byte describing the quantity of data
bytes to be returned. The contents of the registers requested (DATA) are two bytes
each, with the binary content right justified within each pair of characters. The first byte
includes the high order bits and the second, the low order bits.

Because the Slave interface device is normally serviced at the end of the controller's
scan, the data reflects the register content at the end of the scan. Some Slaves limit the
quantity of register content provided each scan; thus for large register quantities,
multiple transmissions are made using register content from sequential scans.

In the example below, the registers 40108 to 40110 have the decimal contents 555, 0,
and 100 respectively.

Adr Func ByteCnt Hi Data Lo Data Hi Data Lo Data Hi Data Lo Data Error Check Field

0B 03 06 02 2B 00 00 00 64 CRC

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 175 of 205

6.8.5 Read Input Registers (Function Code 04)

Query

Function code 04 obtains the contents of the controller's input registers from the Modbus
3x range. These locations receive their values from devices connected to the I/O
structure and can only be referenced, not altered from within the controller, The
addressing allows up to 125 registers to be obtained at each request; however, the
specific Slave device may have restrictions that lower this maximum quantity. The
registers are numbered for zero (30001 = zero, 30002 = one, and so on). Broadcast
mode is not allowed.

The example below requests the contents of register 3009 in Slave number 11.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

Adr Func Data Start Reg Hi Data Start Reg Lo Data #of Regs Hi Data #of Regs Lo Error Check Field

0B 04 00 08 00 01 CRC

Response

The addressed Slave responds with its address and the function code followed by the
information field. The information field contains 1 byte describing the quantity of data
bytes to be returned. The contents of the registers requested (DATA) are 2 bytes each,
with the binary content right justified within each pair of characters. The first byte
includes the high order bits and the second, the low order bits.

Because the Slave interface is normally serviced at the end of the controller's scan, the
data reflects the register content at the end of the scan. Each PC limits the quantity of
register contents provided each scan; thus for large register quantities, multiple PC
scans are required, and the data provided is from sequential scans.

In the example below the register 3009 contains the decimal value 0.

Adr Func Byte Count Data Input Reg Hi Data Input Reg Lo Error Check Field

0B 04 02 00 00 E9

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 176 of 205

6.8.6 Force Single Coil (Function Code 05)

Query

This Function Code forces a single coil (Modbus 0x range) either ON or OFF. Any coil
that exists within the controller can be forced to either state (ON or OFF). However,
because the controller is actively scanning, unless the coil is disabled, the controller can
also alter the state of the coil. Coils are numbered from zero (coil 0001 = zero, coil 0002
= one, and so on). The data value 65,280 (FF00 HEX) sets the coil ON and the value
zero turns it OFF; all other values are illegal and does not affect that coil.

The use of Slave address 00 (Broadcast Mode) forces all attached Slaves to modify the
desired coil.

Note: Functions 5, 6, 15, and 16 are the only messages that are recognized as valid for broadcast.

The example below is a request to Slave number 11 to turn ON coil 0173.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

Adr Func Data Coil # Hi Data Coil # Lo Data On/off Ind Data Error Check Field

0B 05 00 AC FF 00 CRC

Response

The normal response to the Command Request is to re-transmit the message as
received after the coil state has been altered.

Adr Func Data Coil # Hi Data Coil # Lo Data On/ Off Data Error Check Field

0B 05 00 AC FF 00 CRC

The forcing of a coil via Modbus function 5 is accomplished regardless of whether the
addressed coil is disabled or not (In ProSoft products, the coil is only affected if the
necessary ladder logic is implemented).

Note: The Modbus protocol does not include standard functions for testing or changing the DISABLE state
of discrete inputs or outputs. Where applicable, this may be accomplished via device specific Program
commands (In ProSoft products, this is only accomplished through ladder logic programming).

Coils that are reprogrammed in the controller logic program are not automatically cleared
upon power up. Thus, if such a coil is set ON by function Code 5 and (even months
later), an output is connected to that coil, the output is "hot".

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 177 of 205

6.8.7 Preset Single Register (Function Code 06)

Query

This Function Code allows you to modify the contents of a Modbus 4x range in the
Slave. This writes to a single register only. Any holding register that exists within the
controller can have its contents changed by this message. However, because the
controller is actively scanning, it also can alter the content of any holding register at any
time. The values are provided in binary up to the maximum capacity of the controller.
Unused high order bits must be set to zero. When used with Slave address zero
(Broadcast mode) all Slave controllers will load the specified register with the contents
specified.

Note Functions 5, 6, 15, and 16 are the only messages that will be recognized as valid for broadcast.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

The example below is a request to write the value ‘3’ to register 40002 in slave 11.

Adr Func Data Start Reg
Hi

Data Start Reg
Lo

Data #of Regs Hi Data #of Regs Lo Error Check Field

0B 06 00 01 00 03 CRC

Response

The response to a preset single register request is to re-transmit the query message
after the register has been altered.

Adr Func Data Reg Hi Data Reg Lo Data Input Reg Hi Data Input Reg Lo Error Check Field

0B 06 00 01 00 03 CRC

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 178 of 205

6.8.8 Diagnostics (Function Code 08)

Modbus function code 08 provides a series of tests for checking the communication
system between a Master device and a slave, or for checking various internal error
conditions within a slave.

The function uses a two-byte sub-function code field in the query to define the type of
test to be performed. The slave echoes both the function code and sub-function code in
a normal response. Some of the diagnostics commands cause data to be returned from
the remote device in the data field of a normal response.

In general, issuing a diagnostic function to a remote device does not affect the running of
the user program in the remote device. Device memory bit and register data addresses
are not accessed by the diagnostics. However, certain functions can optionally reset
error counters in some remote devices.

A server device can, however, be forced into 'Listen Only Mode' in which it will monitor
the messages on the communications system but not respond to them. This can affect
the outcome of your application program if it depends upon any further exchange of data
with the remote device. Generally, the mode is forced to remove a malfunctioning
remote device from the communications system.

Sub-function Codes Supported

Only Sub-function 00 is supported by the MVI56E-MCM module.

00 Return Query Data

The data passed in the request data field is to be returned (looped back) in the
response. The entire response message should be identical to the request.

Sub-function Data Field (Request) Data Field (Response)

00 00 Any Echo Request Data

Example and State Diagram

Here is an example of a request to remote device to Return Query Data. This uses a
sub-function code of zero (00 00 hex in the two-byte field). The data to be returned is
sent in the two-byte data field (A5 37 hex).

Request Response

Field Name (Hex) Field Name (Hex)

Function 08 Function 08

Sub-function Hi 00 Sub-function Hi 00

Sub-function Lo 00 Sub-function Lo 00

Data Hi A5 Data Hi A5

Data Lo 37 Data Lo 27

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 179 of 205

The data fields in responses to other kinds of queries could contain error counts or other
data requested by the sub-function code.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 180 of 205

6.8.9 Force Multiple Coils (Function Code 15)

Query

This Function Code forces each coil (Modbus 0x range) in a consecutive block of coils to
a desired ON or OFF state. Any coil that exists within the controller can be forced to
either state (ON or OFF). However, because the controller is actively scanning, unless
the coils are disabled, the controller can also alter the state of the coil. Coils are
numbered from zero (coil 00001 = zero, coil 00002 = one, and so on). The desired status
of each coil is packed in the data field, one bit for each coil (1= ON, 0= OFF). The use of
Slave address 0 (Broadcast Mode) will force all attached Slaves to modify the desired
coils.

Note: Functions 5, 6, 15, and 16 are the only messages (other than Loopback Diagnostic Test) that will be
recognized as valid for broadcast.

The following example forces 10 coils starting at address 20 (13 HEX). The two data
fields, CD =1100 and 00 = 0000 000, indicate that coils 27, 26, 23, 22, and 20 are to be
forced on.

Note: This is the structure of the message being sent out to the Modbus network. The byte values below are
in hexadecimal display.

Adr Func Hi Add Lo
Add

Quantity Byte
Cnt

Data Coil Status
20 to 27

Data Coil Status
28 to 29

Error Check
Field

0B 0F 00 13 00 0A 02 CD 00 CRC

Response

The normal response will be an echo of the Slave address, function code, starting
address, and quantity of coils forced.

Adr Func Hi Addr Lo Addr Quantity Error Check Field

0B 0F 00 13 00 0A CRC

The writing of coils via Modbus function 15 will be accomplished regardless of whether
the addressed coils are disabled or not.

Coils that are not programmed in the controller logic program are not automatically
cleared upon power up. Thus, if such a coil is set ON by function code 15 and (even
months later) an output is connected to that coil, the output is hot.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 181 of 205

6.8.10 Preset Multiple Registers (Function Code 16)

Query

Holding registers existing within the controller can have their contents changed by this
message (a maximum of 60 registers). However, because the controller is actively
scanning, it also can alter the content of any holding register at any time. The values are
provided in binary up to the maximum capacity of the controller (16-bit for the 184/384
and 584); unused high order bits must be set to zero.

Note: Function codes 5, 6, 15, and 16 are the only messages that will be recognized as valid for broadcast.

Adr Func Hi
Add

Lo Add Quantity Byte
Cnt

Hi
Data

Lo
Data

Hi
Data

Lo Data Error Check
Field

11 10 00 87 00 02 04 00 0A 01 02 CRC

Response

The normal response to a function 16 query is to echo the address, function code,
starting address and number of registers to be loaded.

Adr Func Hi Addr Lo Addr Quantity Error Check Field

11 10 00 87 00 02 56

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 182 of 205

6.8.11 Modbus Exception Responses

When a Modbus Master sends a request to a Slave device, it expects a normal
response. One of four possible events can occur from the Master's query:

• If the server device receives the request without a communication error, and can
handle the query normally, it returns a normal response.

• If the server does not receive the request due to a communication error, no response
is returned. The Master program will process a timeout condition for the request.

• If the server receives the request, but detects a communication error (parity, LRC,
CRC, ...), no response is returned. The Master program will eventually process a
timeout condition for the request.

• If the server receives the request without a communication error, but cannot handle it
(for example, if the request is to read a non-existent output or register), the server
will return an exception response informing the Master of the nature of the error.

The exception response has two fields that differentiate it from a normal response:

Function Code Field: In a normal response, the server echoes the function code of the
original request in the function code field of the response. All function codes have a
most-significant bit (MSB) of 0 (their values are all below 80 hexadecimal). In an
exception response, the server sets the MSB of the function code to 1. This makes the
function code value in an exception response exactly 80 hexadecimal higher than the
value would be for a normal response.

With the function code's MSB set, the Master's application program can recognize the
exception response and can examine the data field for the exception code.

Data Field: In a normal response, the server may return data or statistics in the data
field (any information that was requested in the request). In an exception response, the
server returns an exception code in the data field. This defines the server condition that
caused the exception.

The following table shows an example of a Master request and server exception
response.

Request Response

Field Name (Hex) Field Name (Hex)

Function 01 Function 81

Starting Address Hi 04 Exception Code 02

Starting Address Lo A1

Quantity of Outputs Hi 00

Quantity of Outputs Lo 01

In this example, the Master addresses a request to server device. The function code (01)
is for a Read Output Status operation. It requests the status of the output at address
1245 (04A1 hex). Note that only that one output is to be read, as specified by the
number of outputs field (0001).

If the output address is non-existent in the server device, the server will return the
exception response with the exception code shown (02). This specifies an illegal data
address for the Slave.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 183 of 205

Modbus Exception Codes

Code Name Meaning

01 Illegal Function The function code received in the query is not an allowable
action for the Slave. This may be because the function
code is only applicable to newer devices, and was not
implemented in the unit selected. It could also indicate that
the Slave is in the wrong state to process a request of this
type, for example because it is unconfigured and is being
asked to return register values.

02 Illegal Data Address The data address received in the query is not an allowable
address for the Slave. More specifically, the combination of
reference number and transfer length is invalid. For a
controller with 100 registers, a request with offset 96 and
length 4 would succeed; a request with offset 96 and length
5 will generate exception 02.

03 Illegal Data Value A value contained in the query data field is not an allowable
value for Slave. This indicates a fault in the structure of the
remainder of a complex request, such as that the implied
length is incorrect. It specifically does not mean that a data
item submitted for storage in a register has a value outside
the expectation of the application program, because the
Modbus protocol is unaware of the significance of any
particular value of any particular register.

04 Slave Device Failure An unrecoverable error occurred while the Slave was
attempting to perform the requested action.

05 Acknowledge Specialized use in conjunction with programming
commands. The Slave has accepted the request and is
processing it, but a long duration of time will be required to
do so. This response is returned to prevent a timeout error
from occurring in the Master. The Master can next issue a
poll program complete message to determine if processing
is completed.

06 Slave Device Busy Specialized use in conjunction with programming
commands. The Slave is engaged in processing a long-
duration program command. The Master should retransmit
the message later when the Slave is free.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 184 of 205

6.9 Using the Optional Add-On Instruction

6.9.1 Before You Begin

• Make sure that you have installed RSLogix 5000 version 16 (or later).

• Download the Optional Add-On file MVI56(E)MCM_Optional_AddOn_Rung_xxx.L5X
from www.prosoft-technology.com.

• Save a copy in a folder in your PC.

6.9.2 Overview

The Optional Add-On Instruction Rung Import contains optional logic for MVI56E-MCM
applications to perform the following tasks.

• Read/Write Ethernet Configuration

Allows the processor to read or write the module IP address, netmask and gateway
values.

Note: This is an optional feature. You can perform the same task through ProSoft Configuration Builder.
Even if your PC is in a different network group you can still access the module through PCB by setting a
temporary IP address.

• Read/Write Module Clock Value

Allows the processor to read and write the module clock settings. The module clock
stores the last time that the Ethernet configuration was changed. The date and time
of the last Ethernet configuration change is displayed in the scrolling LED during
module power up.

Important: The Optional Add-On Instruction only supports the two features listed above. You must use the
sample ladder logic for all other features including backplane transfer of Modbus data.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 185 of 205

6.9.3 Importing the Utility Add-On Instruction

1 Right-click on an empty rung in the main routine of your existing ladder logic and
choose IMPORT RUNGS…

2 Navigate to the folder where you saved
MVI56(E)MCM_Optional_AddOn_Rung_v1_2.L5X and select the file.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 186 of 205

3 In the IMPORT CONFIGURATION window, click OK.

The Add-On Instruction is now visible in the ladder logic. Observe that the procedure
has also imported data types and controller tags associated to the Add-On
Instruction.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 187 of 205

You will notice that new tags have been imported: four MESSAGE tags,
MVI56MCMCLOCK and MVI56MCMETHERNET tags.

4 In the Add-On Instruction click the [...] button next to each MSG tag to open the

MESSAGE CONFIGURATION TAG.
5 Click the COMMUNICATION tab and click the BROWSE button as follows.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 188 of 205

6 Select the module to configure the message path.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 189 of 205

6.9.4 Reading the Ethernet Settings from the Module

Expand the MVI56MCMETHERNET controller tag and move a value of 1 to
MVI56MCMETHERNET.READ.

The bit will be automatically reset and the current Ethernet settings will be copied to
MVI56MCMETHERNET controller tag as follows:

To check the status of the message, refer to the READETHERNETMSG tag.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 190 of 205

6.9.5 Writing the Ethernet Settings to the Module

1 Expand the MVI56MCMETHERNET controller tag.

2 Set the new Ethernet configuration in MVI56MCMETHERNET.CONFIG.

3 Move a value of 1 to MVI56MCMETHERNET.WRITE.

4 After the message is executed, the MVI56MCMETHERNET.WRITE bit resets to 0.

5 To check the status of the message, refer to the WRITEETHERNETMSG tag.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 191 of 205

6.9.6 Reading the Clock Value from the Module

1 Expand the MVI56MCMCLOCK controller tag and move a value of 1 to
MVI56MCMCLOCK.READ

2 The bit will be automatically reset and the current clock value will be copied to
MVI56MCMCLOCK.CONFIG controller tag as follows:

3 To check the status of the message, refer to the READCLOCKMSG tag.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 192 of 205

6.9.7 Writing the Clock Value to the Module

1 Expand the MVI56MCMCLOCK controller tag.

2 Set the new Clock value in MVI56MCMCLOCK.CONFIG.

3 Move a value of 1 to MVI56MCMCLOCK.WRITE.

4 The bit will be automatically reset to 0.

5 To check the status of the message, refer to the WRITECLOCKMSG tag.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 193 of 205

6.10 Using the Sample Program - RSLogix 5000 Version 15 and earlier

The sample program included with your MVI56E-MCM module contains predefined
controller tags, configuration information, data types, and ladder logic that allow the
module to communicate between the ControlLogix processor and a network of Modbus
devices. For most applications, the sample program will work without modification.

6.10.1 Using the Sample Program in a New Application

Opening the Sample Program in RSLogix

The sample program for your MVI56E-MCM module includes custom tags, data types
and ladder logic for data I/O, status and command control. For most applications, you
can run the sample program without modification, or, for advanced applications, you can
incorporate the sample program into your existing application.

Download the manuals and sample program from the ProSoft Technology website:
http://www.prosoft-technology.com/prosoft/support/downloads

From that link, navigate to the download page for your module and choose the sample
program to download for your version of RSLogix 5000 and your processor.

To determine the firmware version of your processor

Important: The RSLinx service must be installed and running on your computer in order for RSLogix to
communicate with the processor. Refer to your RSLinx and RSLogix documentation for help configuring and
troubleshooting these applications.

1 Connect an RS-232 serial cable from the COM (serial) port on your PC to the
communication port on the front of the processor.

2 Start RSLogix 5000 and close any existing project that may be loaded.
3 Open the Communications menu and choose Go Online. RSLogix will establish

communication with the processor. This may take a few moments.
4 When RSLogix has established communication with the processor, the Connected

To Go Online dialog box will open.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 194 of 205

5 On the Connected To Go Online dialog box, click the General tab. This tab shows
information about the processor, including the Revision (firmware) version. In the
following illustration, the firmware version is 11.32

6 Select the sample ladder logic file for your firmware version:

To open the sample program

1 On the Connected to Go Online dialog box, click the Select File button.
2 Choose the sample program file that matches your firmware version, and then click

the Select button.
3 RSLogix will load the sample program.

The next step is to configure the correct controller type and slot number for your
application.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 195 of 205

Choosing the Controller Type

The sample application is for a 1756-L63 ControlLogix 5563 Controller. If you are using
a different model of the ControlLogix processor, you must configure the sample program
to use the correct processor model.

1 In the Controller Organization list, select the folder for the controller and then click
the right mouse button to open a shortcut menu.

2 On the shortcut menu, choose PROPERTIES. This action opens the Controller
Properties dialog box.

3 Click the CHANGE TYPE or CHANGE CONTROLLER button. This action opens the
Change Controller dialog box.

4 Open the TYPE dropdown list, and then select your ControlLogix controller.
5 Select the correct firmware revision for your controller, if necessary.
6 Click OK to save your changes and return to the previous window.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 196 of 205

Selecting the Slot Number for the Module

The sample application is for a module installed in Slot 1 in a ControlLogix rack. The
ladder logic uses the slot number to identify the module. If you are installing the module
in a different slot, you must update the ladder logic so that program tags and variables
are correct, and do not conflict with other modules in the rack.

To change the slot number

1 In the CONTROLLER ORGANIZATION list, select the module [1] 1756-MODULE MVI56,
and then click the right mouse button to open a shortcut menu.

2 On the shortcut menu, choose PROPERTIES. This action opens the MODULE

PROPERTIES dialog box.

3 In the SLOT field, use the up and down arrows on the right side of the field to select
the slot number where the module will reside in the rack, and then click OK.

RSLogix will automatically apply the slot number change to all tags, variables and ladder
logic rungs that use the MVI56E-MCM slot number for computation.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 197 of 205

Adjust the Input and Output Array Sizes

Note: The following steps are only required if you are using the sample ladder logic (RSLogix version 15 or
older) rather than the Add-On Instruction (RSLogix version 16 or newer).

1 Click ReadData to open ladder file and go to rung #2 of this file.
2 Change the High Limit on the LIM statement to allow for 5 blocks of data, as shown

in the following illustration.

(1000 registers / 200 registers per block = 5 blocks of data)

3 Verify the change to this rung. Toggle the object within RSLogix 5000.
4 Save and download ladder to the processor.
5 When Online with the ControlLogix processor, toggle the

MCM.CONTROL.WARMBOOT bit to download the changes to the processor.

Downloading the Sample Program to the Processor

Note: The key switch on the front of the ControlLogix module must be in the REM position.

1 If you are not already online to the processor, open the COMMUNICATIONS menu, and
then choose DOWNLOAD. RSLogix will establish communication with the processor.

2 When communication is established, RSLogix will open a confirmation dialog box.
Click the DOWNLOAD button to transfer the sample program to the processor.

3 RSLogix will compile the program and transfer it to the processor. This process may
take a few minutes.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 198 of 205

4 When the download is complete, RSLogix will open another confirmation dialog box.
Click OK to switch the processor from PROGRAM mode to RUN mode.

Note: If you receive an error message during these steps, refer to your RSLogix documentation to interpret
and correct the error.

6.10.2 Using the Sample Program in an Existing Application

1 Open the Sample Ladder Logic in RSLogix 5000.
2 Start another instance of RSLogix 5000, and then open your existing application.

You will be adding the MVI56E-MCM module definition, and then copying controller tags,
ladder logic, and user defined data types from the sample application into your existing
application.

Defining Module in I/O Configuration

Note: You cannot perform this procedure while you are online to the controller.

1 In the CONTROLLER ORGANIZATION list in RSLogix 5000, click the right mouse button
on the I/O CONFIGURATION icon to open a shortcut menu. On the shortcut menu,
choose NEW MODULE…. This action opens the SELECT MODULE TYPE dialog box.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 199 of 205

2 In the SELECT MODULE TYPE dialog box, select 1756-MODULE (GENERIC 1756

MODULE) from the list and, and then click OK. This action opens the MODULE

PROPERTIES dialog box.

3 In the MODULE PROPERTIES dialog box, enter the Name, Description and Slot options
for your application, using the examples in the following illustration. You must select
the Comm Format as DATA - INT in the dialog box. Failure to set the correct
parameters will result in backplane communication problems between the module
and the processor.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 200 of 205

4 Click the NEXT button and set the Request Packet Interval to 5.0ms as shown in the
following illustration.

5 Click FINISH to save the module into your existing application.

Copying the User Defined Data Types

Next, copy the User Defined Data Types from the sample program to your existing
program. These data types contain configuration information, status, commands and
other functions used by the program.

1 Arrange the two RSLogix 5000 windows on your desktop so that they are side-by-
side.

2 In the CONTROLLER ORGANIZATION pane in the Sample Program, expand the DATA

TYPES folder until the list of User-Defined data types is visible.
3 In the Sample Program window, select one data type at a time, and then drag the

data type to the User-Defined data types folder in your existing program.
4 Repeat these steps until you have copied all of the data types from the sample

program into your existing application.

Note: Data types prefixed with an underscore [_] are used in optional routines, and need not be copied
unless your application requires them. Refer to MVI56E-MCM User Defined Data Types (page 162) for a
description of the usage for each data type.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 201 of 205

Copying the Sample Ladder Logic

Copy the Sample Ladder Logic from the sample program to your existing program.

1 In the CONTROLLER ORGANIZATION pane in the Sample Program, expand the TASKS

folder until the list of program routines is visible.

2 In the Sample Program window, select one routine at a time, and then drag the
routine to the MainProgram folder in your existing program.

3 Save your program.

The sample program contains the following tasks:

MainRoutine

The MAINROUTINE checks for the presence of new read data from the module for the
processor. The module cycles through its list of read blocks to transfer data from the
module to the processor. Whenever new data is available, the module will set the value
for the block in the module’s input image (LOCAL:1:I:DATA[249]). The ladder logic must
constantly scan this input word for a new value. The ladder logic should only perform the
READDATA and WRITEDATA tasks, in that order, when a new value is present in
LOCAL:1:I:DATA[249], otherwise data may be lost or scrambled.

If the new data is available, the LASTREAD and word (249) will not be equal. This will
force the program to call the READDATA subroutine to process the new data received.
After the new data is placed in the Modbus Data Table, the program will send new data
to the module using the WRITEDATA subroutine.

ReadData

The READDATA task handles all new data and status information received from the
module and placing it in the proper location in the processor. Data is transferred from the
module to the processor using the module’s input image (LOCAL:1:I:DATA[]). This task
should set the last read block number (MCM1.BP.LastRead) to the current block number
sent from the module (LOCAL:1:I:DATA[249]) and stores the newly received read block
number (DATA[249]) into the LASTREAD variable.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 202 of 205

Note: The _READCONTROL routine handles the command control responses received from the module. If
command control, event command, or Slave status blocks are not going to be used in the application, then
the _READCONTROL rung (rung 4 in the sample READDATA task) and the _READCONTROL and
_WRITECONTROL ladder files may be removed.

If the module is configured for zero blocks, it will send blocks with identification codes of
zero and -1. These blocks will only contain status data, and no user data will be included
in these blocks.

The ladder obtains status information when the module is configured for either 1 or 0
blocks of read data. If the module is configured with 0 for the ReadRegCnt, then blocks -
1 and 0 will be given by the module on the input image. If the ReadRegCnt is 200 or
less, then you will receive block 0 and block 1.

The ladder logic also determines if the new data received in the input image is user data.
If user data is present, the ladder logic will place the data in the correct location in the
processor’s read data area (MCM.READDATA[]). Up to 200 data words can be
transferred in each block transfer. In addition to the user data, the block also contains
important status data. This data should be copied to the correct data area in the module
(MCM.STATUS). This status data can be used to determine the "health" of the MVI56E-
MCM module. This rung computes offset into the Modbus Data Table for the received
data block and to store the data into the Modbus Data Table.

If the requested block is within the valid range of data blocks for the Modbus Data Table,
the offset into the table is computed as (Block ID number - 1) * 200. This is the starting
offset in the Modbus Data Table where the 200 bits of data will be stored.

When the processor receives a pass-through block the received data will be handled at
the _Pass-Thru routine. If the module is being used as a Modbus Master (PortX.Type=0)
or a standard Modbus Slave (Port X.Type = 1) then this rung of logic and the _PassThru
routine are not required. If the module is being used as PortX.Type = 2 to 4, then this
rung and ladder routine is required.

WriteData

The WriteData task sends data from the processor to the MVI56E-MCM module. Data is
transferred from the processor to the module using the module’s output image
(LOCAL:1:O:DATA[]). This task should store the currently requested data set in the
module’s MCM.BP.LASTWRITE data object. This object is used in all subsequent ladder
logic in case the input word (LOCAL:1:I:DATA[1]) changes during processing.

Note: The _WRITECONTROL routine handles the command control blocks sent to the module. If command
control, event command, or Slave status blocks are not going to be used in the application, then the
_WRITECONTROL rung (rung 7 in the sample WRITEDATA task) and the _READCONTROL and
_WRITECONTROL ladder files may be removed.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 203 of 205

_PassThru

Use this optional task to send pass-through data between the processor and the Modbus
devices connected to the MVI56E-MCM module. Pass-Through functionality allows the
Modbus Master to read and write the same Modbus address on a Modbus Slave. If
pass-through mode is not chosen, then the attached Modbus Master device must read
from one set of Modbus register/bits and write to another set of Modbus register/bits.
Pass-Through mode takes a Modbus write command (Function Codes 5, 6, 15, and 16)
and passes that to the ControlLogix processor. The pass-through ladder logic then
parses that information and updates the MCM.DATA.WRITEDATA array with the new
value that has been written by the Modbus Master.

_ReadControl

Use this optional task to get status and event data from the Modbus devices connected
to the MVI56E-MCM module. Special command blocks requested from the module in the
_WriteControl routine are processed and handled in this routine. If command control,
event command, or Slave status blocks are not going to be used in the application, then
this rung and the _ReadControl and _WriteControl ladder files may be removed.

_WriteControl

Use this optional task to send commands to the Modbus devices connected to the
MVI56E-MCM module. Command Control, Event Command, and Slave status blocks
are sent to the module in this task.

Copying the Controller Tags

Next, copy the Controller Tags from the sample program to your existing program. The
sample program includes the following tags in the MCM structure.

• MCM.MODDEF configures the database in the module. The module uses this
database to store input and output data transferred between the processor and the
Modbus devices connected to the MVI56E-MCM module.

• MCM.PORT1 and MCM.PORT2 configure the module’s serial ports for Modbus
communications. The sample program configures Port 1 as a Modbus Master, and
Port 2 as a Modbus Slave.

• MCM.P1.CMD and MCM.P2.CMD configure the Modbus Master commands for the
module. These commands are active only if a port is configured as a Modbus
Master.

• MCM.READDATA contains data read by the ControlLogix processor from the
MVI56E-MCM module.

• MCM.WRITEDATA contains data read from the ControlLogix processor to the
module’s internal database.

The remaining controller tags contain error and status information, and special
commands to execute.

1 In the CONTROLLER ORGANIZATION pane in each instance of RSLogix 5000, expand
the CONTROLLER folder.

2 Double-click the CONTROLLER TAGS icon in each instance of RSLogix 5000. This
action opens the CONTROLLER TAGS dialog box.

3 In the CONTROLLER TAGS dialog box in each instance of RSLogix 5000, click the
EDIT TAGS tab, located at the bottom of the dialog box.

MVI56E-MCM ♦ ControlLogix® Platform Reference
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 204 of 205

4 In the Sample Program, select the line containing the MCM tag structure.

5 Drag the MCM tag structure to the blank line at the bottom of the list in the EDIT TAGS
tab in your existing program.

Editing the Controller Tags

The MVI56E-MCM module configuration is stored in the MCM.CONFIG structure in the
CONTROLLER TAGS dialog box. The sample program configures the module as a Modbus
Master on Port 1, and a Modbus Slave on Port 2.

To edit the module configuration, in the Controller Organization pane, expand the
CONTROLLER folder, and then double-click CONTROLLER TAGS. This action opens
CONTROLLER TAGS - MVI56MCM, as shown in the following illustration.

• To configure a Modbus Master, refer to Configuration as a Modbus Master (page
32).

• To configure a Modbus Slave, refer to Configuration as a Modbus Slave (page 60).

Note: In order for any of the new values entered into these fields to be used by the module, you must restart
the module (WarmBoot, ColdBoot, or cycle power).

MVI56E-MCM ♦ ControlLogix® Platform Support, Service & Warranty
Modbus Communication Module User Manual

ProSoft Technology, Inc. Page 205 of 205

7 Support, Service & Warranty

7.1 Contacting Technical Support

ProSoft Technology, Inc. is committed to providing the most efficient and effective
support possible. Before calling, please gather the following information to assist in
expediting this process:

1 Product Version Number

2 System architecture

3 Network details

If the issue is hardware related, we will also need information regarding:

1 Module configuration and associated ladder files, if any

2 Module operation and any unusual behavior

3 Configuration/Debug status information

4 LED patterns

5 Details about the interfaced serial, Ethernet or Fieldbus devices

North America (Corporate Location) Europe / Middle East / Africa Regional Office

Phone: +1 661-716-5100
ps.prosofttechnology@belden.com
Languages spoken: English, Spanish

REGIONAL TECH SUPPORT
ps.support@belden.com

Phone: +33.(0)5.34.36.87.20
ps.europe@belden.com
Languages spoken: English, French, Hindi, Italian

REGIONAL TECH SUPPORT
ps.support.emea@belden.com

Latin America Regional Office Asia Pacific Regional Office

Phone: +52.222.264.1814
ps.latinam@belden.com
Languages spoken: English, Spanish,
Portuguese

REGIONAL TECH SUPPORT
ps.support.la@belden.com

Phone: +60.3.2247.1898
ps.asiapc@belden.com
Languages spoken: Bahasa, Chinese, English,
Hindi, Japanese, Korean, Malay

REGIONAL TECH SUPPORT
ps.support.ap@belden.com

For additional ProSoft Technology contacts in your area, please visit:
www.prosoft-technology.com/About-Us/Contact-Us

7.2 Warranty Information

For complete details regarding ProSoft Technology’s legal terms and conditions,
please see:
www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions

For Return Material Authorization information, please see:
www.prosoft-technology.com/Services-Support/Return-Material-Instructions

mailto:ps.prosofttechnology@belden.com
mailto:ps.support@belden.com
mailto:ps.europe@belden.com
mailto:ps.support.emea@belden.com
mailto:ps.latinam@belden.com
mailto:ps.support.la@belden.com
mailto:ps.asiapc@belden.com
mailto:ps.support.ap@belden.com
https://www.prosoft-technology.com/About-Us/Contact-Us
https://www.prosoft-technology.com/ProSoft-Technology-Legal-Terms-and-Conditions
https://www.prosoft-technology.com/Services-Support/Return-Material-Instructions

	Your Feedback Please
	Content Disclaimer
	Agency Approvals and Certifications

	1 Start Here
	1.1 System Requirements
	1.2 Deployment Checklist
	1.3 Package Contents
	1.4 Setting Jumpers
	1.5 Installing the Module in the Rack
	1.6 Creating a New RSLogix 5000 Project
	1.6.1 Before You Import the Add-On Instruction
	About the Optional Add-On Instruction

	1.6.2 Creating the Module
	1.6.3 Import the Ladder Rung
	1.6.4 Adding Multiple Modules (Optional)
	1.6.5 Adjust the Input and Output Array Sizes (Optional)

	1.7 Connecting Your PC to the ControlLogix Processor
	1.8 Downloading the Sample Program to the Processor
	1.8.1 Configuring the RSLinx Driver for the PC COM Port

	2 Configuration as a Modbus Master
	2.1 Overview
	2.2 ModDef Settings
	2.2.1 Port Configuration
	2.2.2 Master Command Configuration
	2.2.3 Other Modbus Addressing Schemes
	Actual Values (Input Registers) Addresses: 0200 to 0E1F

	2.3 Master Command Examples
	2.3.1 Read Holding Registers 4x (Modbus Function Code 3)
	2.3.2 Read Input Registers 3x (Modbus Function Code 4)
	2.3.3 Read Coil Status 0x (Modbus Function Code 1)
	2.3.4 Read Input Status 1x (Modbus Function Code 2)
	2.3.5 Force (Write) Single Coil 0x (Modbus Function Code 5)
	2.3.6 Force (Write) Multiple Coils 0x (Modbus Function Code 15)
	2.3.7 Preset (Write) Single Register 4x (Modbus Function Code 6)
	2.3.8 Preset (Write) Multiple Registers 4x (Modbus Function Code 16)

	2.4 Floating-Point Data Handling (Modbus Master)
	2.4.1 Read Floating-Point Data
	2.4.2 Read Multiple Floating-Point Registers
	2.4.3 Write Floats to Slave Device
	2.4.4 Read Floats with Single Modbus Register Address (Enron/Daniel Float)
	2.4.5 Write to Enron/Daniel Floats

	2.5 Command Control and Event Command
	2.5.1 Command Control
	2.5.2 Event Command

	3 Configuration as a Modbus Slave
	3.1 Overview
	3.2 ModDef Settings
	3.2.1 Modbus Memory Map
	3.2.2 Customizing the Memory Map

	3.3 Slave Configuration
	3.4 Floating-Point Data Handling (Modbus Slave)
	3.4.1 Enron/Daniel Float Configuration

	3.5 Read and Write Same Modbus Address (Pass Through)

	4 Verify Communication
	4.1 Verifying Master Communications
	4.1.1 MVI56E-MCM Status Data Definition as a Master
	4.1.2 Command Error Codes
	Standard Modbus Protocol Errors
	Module Communication Error Codes
	Command List Entry Errors
	Transferring the Command Error List to the Processor

	4.1.3 MCM Status Data

	4.2 Verify Slave Communications
	4.2.1 MVI56E-MCM Status Data Definition as a Slave

	5 Diagnostics and Troubleshooting
	5.1 Ethernet LED Indicators
	5.1.1 Scrolling LED Status Indicators
	Initialization Messages
	Operation Messages

	5.1.2 Non-Scrolling LED Status Indicators

	5.2 Clearing a Fault Condition
	5.3 Troubleshooting the LEDs
	5.3.1 Processor Errors
	5.3.2 Module Errors

	5.4 Setting Up ProSoft Configuration Builder
	5.4.1 Installing ProSoft Configuration Builder
	5.4.2 Setting Up the Project
	5.4.3 Assigning an IP Address in the Project

	5.5 Connecting Your PC to the Module
	5.5.1 Download the IP Address through CIPconnect
	Example 1: Local Rack Application
	Rack 1

	Example 2: Remote Rack Application
	Rack 1
	Rack 2

	5.5.2 Using RSWho to Connect to the Module
	5.5.3 Connecting Your PC to the Module's Ethernet Port
	Assigning a Temporary IP Address

	5.6 Downloading the Project to the Module
	5.7 Using the Diagnostics Menu in ProSoft Configuration Builder
	5.7.1 The Diagnostics Menu
	5.7.2 Monitoring Backplane Information
	Backplane Configuration
	Backplane Status

	5.7.3 Monitoring Database Information
	5.7.4 Monitoring General Information
	5.7.5 Monitoring Modbus Port Information
	Port Configuration
	Master Command List
	Master Command Status
	Slave Status List
	Port Status

	5.7.6 Data Analyzer
	Configuring the Data Analyzer
	Select Timing Interval
	Select the Communication Port to Analyze
	Select the Data Format

	Starting the Data Analyzer
	Stopping the Data Analyzer
	Data Analyzer Tips

	5.8 Reading Status Data from the Module
	5.8.1 Viewing the Error Status Table

	5.9 Configuration Error Codes
	5.10 Connect to the Module’s Webpage

	6 Reference
	6.1 Product Specifications
	6.1.1 General Specifications
	6.1.2 General Specifications - Modbus Master/Slave
	6.1.3 Functional Specifications
	Slave Specifications
	Master Specifications

	6.1.4 Hardware Specifications

	6.2 Functional Overview
	6.2.1 About the Modbus Protocol
	6.2.2 Backplane Data Transfer
	6.2.3 Normal Data Transfer
	Read Block
	Read Block from Module to Processor

	Write Block
	Write Block from Processor to Module

	6.2.4 Special Function Blocks
	Event Command Blocks (1000 to 1255 or 2000 to 2255)
	Block Request from Processor to Module
	Block Response from Module to Processor

	Slave Status Blocks (3000 to 3003 or 3100 to 3103)
	Block Request from Processor to Module
	Block Response from Module to Processor
	Block Request from Processor to Module
	Block Response from Module to Processor
	Block Request from Processor to Module
	Block Response from Module to Processor

	Command Control Blocks (5001 to 5006 or 5101 to 5106)
	Block Request from Processor to Module
	Block Response from Module to Processor

	Configuration Data Transfer
	Module Configuration Block (9000)
	Block Request from Module to Processor
	Configuration Block from Processor to Module
	Block Response from Module to Processor
	Master Command Data List (6000 to 6012 or 6100 to 6112)
	Configuration Block from Processor to Module

	Pass-Through Blocks
	Unformatted Pass-Through Blocks (9996)
	Pass-Through Block 9996 from Module to Processor
	Response Block 9996 from Processor to Module
	Formatted Pass-Through Blocks (9956 to 9959)
	Function 5

	Pass-Through Block 9958 from Module to Processor
	Response Block 9958 from Processor to Module
	Function 6 and 16

	Pass-Through Blocks 9956 or 9957 from Module to Processor
	Response Blocks 9956 or 9957 from Processor to Module
	Function 15

	Pass-Through Block 9959 from Module to Processor
	Response Block 9959 from Processor to Module

	Warm Boot Block (9998)
	Block Request from Processor to Module

	Cold Boot Block (9999)
	Block Request from Processor to Module

	MVI56E-MCM Remote Master Control
	Write Configuration Block (-9000 and -6000 to -6003 or -6100 to -6103)
	Block Response from Module to Processor
	Block Response from Module to Processor

	6.2.5 Data Flow Between MVI56E-MCM and ControlLogix Processor
	Slave Driver
	Master Driver
	Master Command List

	6.3 Cable Connections
	6.3.1 Ethernet Cable Specifications
	6.3.2 Ethernet Cable Configuration
	6.3.3 Ethernet Performance
	6.3.4 RS-232 Application Port(s)
	RS-232: Modem Connection (Hardware Handshaking Required)
	RS-232: Null Modem Connection (Hardware Handshaking)
	RS-232: Null Modem Connection (No Hardware Handshaking)

	6.3.5 RS-422
	6.3.6 RS-485 Application Port(s)
	RS-485 and RS-422 Tip

	6.3.7 DB9 to RJ45 Adaptor (Cable 14)

	6.4 MVI56E-MCM Database Definition
	6.5 MVI56E-MCM Configuration Data
	6.5.1 Backplane Setup
	6.5.2 Port 1 Setup
	6.5.3 Port 2 Setup
	6.5.4 Port 1 Commands
	6.5.5 Port 2 Commands
	6.5.6 Miscellaneous Status
	6.5.7 Command Control

	6.6 MVI56E-MCM Status Data Definition
	6.7 MVI56E-MCM User Defined Data Types
	6.7.1 MCMModuleDef
	6.7.2 MCMCONFIG
	MCMModule
	MCMPort
	MCMCmd

	6.7.3 MCMDATA
	6.7.4 MCMSTATUS
	MCMPortErrors
	MCMBlkStat

	6.7.5 MCMCONTROL
	CmdControl
	EventCmd
	SlavePollStat
	Passthru

	6.7.6 MCMUTIL

	6.8 Modbus Protocol Specification
	6.8.1 Commands Supported by the Module
	6.8.2 Read Coil Status (Function Code 01)
	Query
	Response

	6.8.3 Read Input Status (Function Code 02)
	Query
	Response

	6.8.4 Read Holding Registers (Function Code 03)
	Query
	Response

	6.8.5 Read Input Registers (Function Code 04)
	Query
	Response

	6.8.6 Force Single Coil (Function Code 05)
	Query
	Response

	6.8.7 Preset Single Register (Function Code 06)
	Query
	Response

	6.8.8 Diagnostics (Function Code 08)
	Sub-function Codes Supported
	00 Return Query Data
	Example and State Diagram

	6.8.9 Force Multiple Coils (Function Code 15)
	Query
	Response

	6.8.10 Preset Multiple Registers (Function Code 16)
	Query
	Response

	6.8.11 Modbus Exception Responses
	Modbus Exception Codes

	6.9 Using the Optional Add-On Instruction
	6.9.1 Before You Begin
	6.9.2 Overview
	6.9.3 Importing the Utility Add-On Instruction
	6.9.4 Reading the Ethernet Settings from the Module
	6.9.5 Writing the Ethernet Settings to the Module
	6.9.6 Reading the Clock Value from the Module
	6.9.7 Writing the Clock Value to the Module

	6.10 Using the Sample Program - RSLogix 5000 Version 15 and earlier
	6.10.1 Using the Sample Program in a New Application
	Opening the Sample Program in RSLogix
	Choosing the Controller Type
	Selecting the Slot Number for the Module
	Adjust the Input and Output Array Sizes
	Downloading the Sample Program to the Processor

	6.10.2 Using the Sample Program in an Existing Application
	Defining Module in I/O Configuration
	Copying the User Defined Data Types
	Copying the Sample Ladder Logic
	MainRoutine
	ReadData
	WriteData
	_PassThru
	_ReadControl
	_WriteControl

	Copying the Controller Tags
	Editing the Controller Tags

	7 Support, Service & Warranty
	7.1 Contacting Technical Support
	7.2 Warranty Information

